{"title":"Applying Transfer Learning to Sentiment Analysis in Social Media","authors":"Ariadna de Arriba, M. Oriol, Xavier Franch","doi":"10.1109/REW53955.2021.00060","DOIUrl":null,"url":null,"abstract":"Context: Sentiment analysis is an NLP technique that can be used to automatically obtain the sentiment of a crowd of end-users regarding a software application. However, applying sentiment analysis is a difficult task, especially considering the need of obtaining enough good quality data for training a Machine Learning (ML) model. To address this challenge, transfer learning can help us save time and get better performance results with a limited amount of data. Objective: In this paper, we aim at identifying to which degree transfer learning improves the results of sentiment analysis of messages shared by end-users in social media. Method: We propose a tool-supported framework able to monitor and analyze the sentiment of tweets with different ML models and settings. Using the proposed framework, we apply transfer learning and conduct a set of experiments with multiple datasets. Results: The performance of different ML models with transfer learning from different datasets are obtained and discussed, showing how different factors affect the results, and discussing how they have to be considered when applying transfer learning.","PeriodicalId":393646,"journal":{"name":"2021 IEEE 29th International Requirements Engineering Conference Workshops (REW)","volume":"244 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Requirements Engineering Conference Workshops (REW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REW53955.2021.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Context: Sentiment analysis is an NLP technique that can be used to automatically obtain the sentiment of a crowd of end-users regarding a software application. However, applying sentiment analysis is a difficult task, especially considering the need of obtaining enough good quality data for training a Machine Learning (ML) model. To address this challenge, transfer learning can help us save time and get better performance results with a limited amount of data. Objective: In this paper, we aim at identifying to which degree transfer learning improves the results of sentiment analysis of messages shared by end-users in social media. Method: We propose a tool-supported framework able to monitor and analyze the sentiment of tweets with different ML models and settings. Using the proposed framework, we apply transfer learning and conduct a set of experiments with multiple datasets. Results: The performance of different ML models with transfer learning from different datasets are obtained and discussed, showing how different factors affect the results, and discussing how they have to be considered when applying transfer learning.