Fine-grained geolocalisation of non-geotagged tweets

P. Paraskevopoulos, Themis Palpanas
{"title":"Fine-grained geolocalisation of non-geotagged tweets","authors":"P. Paraskevopoulos, Themis Palpanas","doi":"10.1145/2808797.2808869","DOIUrl":null,"url":null,"abstract":"The rise in the use of social networks in the recent years has resulted in an abundance of information on different aspects of everyday social activities that is available online, with the most prominent and timely source of such information being Twitter. This has resulted in a proliferation of tools and applications that can help end-users and large-scale event organizers to better plan and manage their activities. In this process of analysis of the information originating from social networks, an important aspect is that of the geographic coordinates, i.e., geolocalisation, of the relevant information, which is necessary for several applications (e.g., on trending venues, traffic jams, etc.). Unfortunately, only a very small percentage of the Twitter posts are geotagged, which significantly restricts the applicability and utility of such applications. In this work, we address this problem by proposing a framework for geolocating tweets that are not geotagged. Our solution is general, and estimates the location from which a post was generated by exploiting the similarities in the content between this post and a set of geotagged tweets, as well as their time-evolution characteristics. Contrary to previous approaches, our framework aims at providing accurate geolocation estimates at fine grain (i.e., within a city). The experimental evaluation with real data demonstrates the efficiency and effectiveness of our approach.","PeriodicalId":371988,"journal":{"name":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808797.2808869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

The rise in the use of social networks in the recent years has resulted in an abundance of information on different aspects of everyday social activities that is available online, with the most prominent and timely source of such information being Twitter. This has resulted in a proliferation of tools and applications that can help end-users and large-scale event organizers to better plan and manage their activities. In this process of analysis of the information originating from social networks, an important aspect is that of the geographic coordinates, i.e., geolocalisation, of the relevant information, which is necessary for several applications (e.g., on trending venues, traffic jams, etc.). Unfortunately, only a very small percentage of the Twitter posts are geotagged, which significantly restricts the applicability and utility of such applications. In this work, we address this problem by proposing a framework for geolocating tweets that are not geotagged. Our solution is general, and estimates the location from which a post was generated by exploiting the similarities in the content between this post and a set of geotagged tweets, as well as their time-evolution characteristics. Contrary to previous approaches, our framework aims at providing accurate geolocation estimates at fine grain (i.e., within a city). The experimental evaluation with real data demonstrates the efficiency and effectiveness of our approach.
非地理标记推文的细粒度地理定位
近年来,社交网络使用的增加导致了日常社交活动不同方面的丰富信息可以在网上获得,这些信息最突出和及时的来源是Twitter。这导致了工具和应用程序的激增,这些工具和应用程序可以帮助最终用户和大型活动组织者更好地计划和管理其活动。在分析来自社交网络的信息的过程中,一个重要的方面是相关信息的地理坐标,即地理定位,这对于一些应用程序(例如,热门场地,交通堵塞等)是必要的。不幸的是,只有很小比例的Twitter帖子是地理标记的,这极大地限制了此类应用程序的适用性和实用性。在这项工作中,我们通过提出一个框架来定位没有地理标记的推文来解决这个问题。我们的解决方案是通用的,并通过利用这篇文章与一组地理标记的tweet之间的内容相似性以及它们的时间演化特征来估计帖子生成的位置。与以前的方法相反,我们的框架旨在提供精确的精细地理位置估计(即在城市内)。实际数据的实验验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信