Transcoding live adaptive video streams at a massive scale in the cloud

R. Aparicio-Pardo, Karine Pires, Alberto Blanc, G. Simon
{"title":"Transcoding live adaptive video streams at a massive scale in the cloud","authors":"R. Aparicio-Pardo, Karine Pires, Alberto Blanc, G. Simon","doi":"10.1145/2713168.2713177","DOIUrl":null,"url":null,"abstract":"More and more users are watching online videos produced by non-professional sources (e.g., gamers, teachers of online courses, witnesses of public events) by using an increasingly diverse set of devices to access the videos (e.g., smartphones, tablets, HDTV). Live streaming service providers can combine adaptive streaming technologies and cloud computing to satisfy this demand. In this paper, we study the problem of preparing live video streams for delivery using cloud computing infrastructure, e.g., how many representations to use and the corresponding parameters (resolution and bit-rate). We present an integer linear program (ILP) to maximize the average user quality of experience (QoE) and a heuristic algorithm that can scale to large number of videos and users. We also introduce two new datasets: one characterizing a popular live streaming provider (Twitch) and another characterizing the computing resources needed to transcode a video. They are used to set up realistic test scenarios. We compare the performance of the optimal ILP solution with current industry standards, showing that the latter are sub-optimal. The solution of the ILP also shows the importance of the type of video on the optimal streaming preparation. By taking advantage of this, the proposed heuristic can efficiently satisfy a time varying demand with an almost constant amount of computing resources.","PeriodicalId":202494,"journal":{"name":"Proceedings of the 6th ACM Multimedia Systems Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2713168.2713177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

More and more users are watching online videos produced by non-professional sources (e.g., gamers, teachers of online courses, witnesses of public events) by using an increasingly diverse set of devices to access the videos (e.g., smartphones, tablets, HDTV). Live streaming service providers can combine adaptive streaming technologies and cloud computing to satisfy this demand. In this paper, we study the problem of preparing live video streams for delivery using cloud computing infrastructure, e.g., how many representations to use and the corresponding parameters (resolution and bit-rate). We present an integer linear program (ILP) to maximize the average user quality of experience (QoE) and a heuristic algorithm that can scale to large number of videos and users. We also introduce two new datasets: one characterizing a popular live streaming provider (Twitch) and another characterizing the computing resources needed to transcode a video. They are used to set up realistic test scenarios. We compare the performance of the optimal ILP solution with current industry standards, showing that the latter are sub-optimal. The solution of the ILP also shows the importance of the type of video on the optimal streaming preparation. By taking advantage of this, the proposed heuristic can efficiently satisfy a time varying demand with an almost constant amount of computing resources.
在云中大规模地转码实时自适应视频流
越来越多的用户通过使用越来越多样化的设备(如智能手机、平板电脑、高清电视)观看由非专业来源(如游戏玩家、在线课程教师、公共事件目击者)制作的在线视频。直播服务提供商可以结合自适应流媒体技术和云计算来满足这一需求。在本文中,我们研究了使用云计算基础设施准备实时视频流的问题,例如,要使用多少表示和相应的参数(分辨率和比特率)。我们提出了一个整数线性规划(ILP)来最大化平均用户体验质量(QoE)和一个启发式算法,可以扩展到大量的视频和用户。我们还引入了两个新的数据集:一个描述了流行的流媒体直播提供商(Twitch),另一个描述了转码视频所需的计算资源。它们被用来设置真实的测试场景。我们将最优ILP解决方案的性能与当前的行业标准进行了比较,表明后者是次优的。ILP的求解也表明了视频类型对最佳流准备的重要性。利用这一点,所提出的启发式算法可以在计算资源几乎不变的情况下有效地满足时变的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信