Enhancing bottom tracking for AUVs by using sound diffraction

Vincent Creuze, B. Jouvencel, P. Baccou
{"title":"Enhancing bottom tracking for AUVs by using sound diffraction","authors":"Vincent Creuze, B. Jouvencel, P. Baccou","doi":"10.1109/OCEANSE.2005.1511679","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method of seabed detection based on the use of a single electro-acoustic transducer (sounder). This method uses both acoustic diffraction and bottom backscattering coefficients. Firstly, we present the acoustic sensor and its geometry. When dimensions of the aperture of the transducer are not very large in comparison with the sound wavelength, diffraction must be taken into account in the estimation of beam geometry. We determine the beam geometry by application of the Huygens-Fresnel principle. We explain how the shape and dimensions of its aperture will influence the diffraction of the acoustic beam (diffraction patterns are presented). We also detail the bottom backscattering properties and their influence on the backscattered acoustic energy of main and secondary beams. In the second part, we introduce a new method aiming to extract seabed features from the received acoustic echo. This method is based on the shape of the received acoustic echo and aims to work out the seabed slope. In the last part, we present results obtained during simulations and during experimentations conducted in the open sea.","PeriodicalId":120840,"journal":{"name":"Europe Oceans 2005","volume":"840 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europe Oceans 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2005.1511679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a method of seabed detection based on the use of a single electro-acoustic transducer (sounder). This method uses both acoustic diffraction and bottom backscattering coefficients. Firstly, we present the acoustic sensor and its geometry. When dimensions of the aperture of the transducer are not very large in comparison with the sound wavelength, diffraction must be taken into account in the estimation of beam geometry. We determine the beam geometry by application of the Huygens-Fresnel principle. We explain how the shape and dimensions of its aperture will influence the diffraction of the acoustic beam (diffraction patterns are presented). We also detail the bottom backscattering properties and their influence on the backscattered acoustic energy of main and secondary beams. In the second part, we introduce a new method aiming to extract seabed features from the received acoustic echo. This method is based on the shape of the received acoustic echo and aims to work out the seabed slope. In the last part, we present results obtained during simulations and during experimentations conducted in the open sea.
利用声衍射增强水下机器人的底部跟踪
本文提出了一种基于单一电声换能器(测深器)的海底探测方法。该方法同时使用声衍射系数和底部后向散射系数。首先,我们介绍了声传感器及其几何结构。当换能器的孔径尺寸与声波长相比不是很大时,在估计光束几何形状时必须考虑衍射。应用惠更斯-菲涅耳原理确定了光束的几何形状。我们解释了它的孔径的形状和尺寸将如何影响声束的衍射(衍射模式提出)。本文还详细讨论了底面后向散射特性及其对主、次波束后向散射声能的影响。第二部分介绍了一种从接收到的声学回波中提取海底特征的新方法。该方法根据接收到的声回波的形状,以求出海底坡度为目标。在最后一部分,我们给出了在模拟和在公海进行的实验中得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信