Visual web mining

Amir H. Youssefi, D. Duke, Mohammed J. Zaki
{"title":"Visual web mining","authors":"Amir H. Youssefi, D. Duke, Mohammed J. Zaki","doi":"10.1145/1013367.1013492","DOIUrl":null,"url":null,"abstract":"Analysis of web site usage data involves two significant challenges: firstly the volume of data, arising from the growth of the web, and secondly, the structural complexity of web sites. In this paper we apply Data Mining and Information Visualization techniques to the web domain in order to benefit from the power of both human visual perception and computing we term this Visual Web Mining. In response to the two challenges, we propose a generic framework, where we apply Data Mining techniques to large web data sets and use Information Visualization methods on the results. The goal is to correlate the outcomes of mining Web Usage Logs and the extracted Web Structure by visually superimposing the results. We design several new information visualization diagrams.","PeriodicalId":409891,"journal":{"name":"WWW Alt. '04","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WWW Alt. '04","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1013367.1013492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Analysis of web site usage data involves two significant challenges: firstly the volume of data, arising from the growth of the web, and secondly, the structural complexity of web sites. In this paper we apply Data Mining and Information Visualization techniques to the web domain in order to benefit from the power of both human visual perception and computing we term this Visual Web Mining. In response to the two challenges, we propose a generic framework, where we apply Data Mining techniques to large web data sets and use Information Visualization methods on the results. The goal is to correlate the outcomes of mining Web Usage Logs and the extracted Web Structure by visually superimposing the results. We design several new information visualization diagrams.
可视化web挖掘
网站使用数据的分析涉及两个重大挑战:首先是由于网络的增长而产生的数据量,其次是网站结构的复杂性。在本文中,我们将数据挖掘和信息可视化技术应用于web领域,以便从人类视觉感知和计算的力量中获益,我们称之为视觉web挖掘。为了应对这两个挑战,我们提出了一个通用框架,在这个框架中,我们将数据挖掘技术应用于大型web数据集,并对结果使用信息可视化方法。目标是通过可视化地叠加结果来关联挖掘Web使用日志的结果和提取的Web结构。我们设计了几个新的信息可视化图表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信