{"title":"Cerebellar cortex","authors":"E. Rolls","doi":"10.1093/acprof:oso/9780198784852.003.0023","DOIUrl":null,"url":null,"abstract":"The cerebellar cortex appears to be involved in predictive feedforward control to generate smooth movements. There is a beautiful network architecture which suggests that the granule cells perform expansion recoding of the inputs; that these connect to the Purkinje cells via an architecture that ensures regular sampling; and that each Purkinje cell has a single teacher, the climbing fibre, which produces associative long-term synaptic depression as part of perceptron-like learning.","PeriodicalId":166684,"journal":{"name":"Brain Computations","volume":"246 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Computations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/acprof:oso/9780198784852.003.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The cerebellar cortex appears to be involved in predictive feedforward control to generate smooth movements. There is a beautiful network architecture which suggests that the granule cells perform expansion recoding of the inputs; that these connect to the Purkinje cells via an architecture that ensures regular sampling; and that each Purkinje cell has a single teacher, the climbing fibre, which produces associative long-term synaptic depression as part of perceptron-like learning.