Extended Semi-Local Convergence of Newton's Method using the Center Lipschitz Condition and the Restricted Convergence Domain

I. K. Argyros, S. George
{"title":"Extended Semi-Local Convergence of Newton's Method using the Center Lipschitz Condition and the Restricted Convergence Domain","authors":"I. K. Argyros, S. George","doi":"10.33401/FUJMA.503716","DOIUrl":null,"url":null,"abstract":"The objective of this study is to extend the usage of Newton's method for Banach space valued operators. We use our new idea of restricted convergence domain in combination with the center Lipschitz hypothesis on the Frechet-derivatives where the center is not necessarily the initial point. This way our semi-local convergence analysis is tighter than in earlier works (since the new majorizing function is at least as tight as the ones used before) leading to weaker criteria, better error bounds more precise information on the solution. These improvements are obtained under the same computational effort.","PeriodicalId":199091,"journal":{"name":"Fundamental Journal of Mathematics and Applications","volume":"12367 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamental Journal of Mathematics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33401/FUJMA.503716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this study is to extend the usage of Newton's method for Banach space valued operators. We use our new idea of restricted convergence domain in combination with the center Lipschitz hypothesis on the Frechet-derivatives where the center is not necessarily the initial point. This way our semi-local convergence analysis is tighter than in earlier works (since the new majorizing function is at least as tight as the ones used before) leading to weaker criteria, better error bounds more precise information on the solution. These improvements are obtained under the same computational effort.
利用中心Lipschitz条件和有限收敛域的牛顿法的扩展半局部收敛性
本研究的目的是推广牛顿方法在Banach空间值算子上的应用。我们在frechet -导数上结合中心Lipschitz假设,使用了限制收敛域的新思想,其中中心不一定是初始点。这样,我们的半局部收敛分析比以前的工作更严格(因为新的最大化函数至少与以前使用的函数一样严格),导致更弱的标准,更好的误差边界和更精确的解信息。这些改进是在相同的计算量下得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信