Artificial Intelligence (AI) techniques to analyze the determinants attributes in housing prices

Julia M. Núñez Tabale, F. J. R. Carmona, J. M. Ocerin
{"title":"Artificial Intelligence (AI) techniques to analyze the determinants attributes in housing prices","authors":"Julia M. Núñez Tabale, F. J. R. Carmona, J. M. Ocerin","doi":"10.4114/INTARTIF.VOL19ISS58PP23-38","DOIUrl":null,"url":null,"abstract":"The econometric approach to obtain the value of a property began with hedonic modelling, which were based on a set of property attributes, internal or external, associated to each particular dwelling. The final sale value can be estimated, and also the marginal prices of each exogenous explanatory variable. A good alternative to the hedonic approach is based on several Artificial Intelligence (AI) techniques, such as artificial neural networks (ANN), these tend to be more precise. Both methodologies are compared, and a case study is developed using data from Seville, the larger town in the South of Spain.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/INTARTIF.VOL19ISS58PP23-38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The econometric approach to obtain the value of a property began with hedonic modelling, which were based on a set of property attributes, internal or external, associated to each particular dwelling. The final sale value can be estimated, and also the marginal prices of each exogenous explanatory variable. A good alternative to the hedonic approach is based on several Artificial Intelligence (AI) techniques, such as artificial neural networks (ANN), these tend to be more precise. Both methodologies are compared, and a case study is developed using data from Seville, the larger town in the South of Spain.
人工智能(AI)技术分析房价的决定因素属性
获得房产价值的计量经济学方法始于享乐模型,该模型基于与每个特定住宅相关的一组内部或外部房产属性。最终的销售价值可以估计,也可以估计每个外生解释变量的边际价格。一个很好的替代方法是基于几种人工智能(AI)技术,如人工神经网络(ANN),这些技术往往更精确。对这两种方法进行了比较,并利用西班牙南部较大城镇塞维利亚的数据进行了案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信