Decomposition of EEG signal and detection of sleep spindle using sparse optimization

Chen-Xin Fang, Mei-Jing Sun, Zhen-Hua Zhao
{"title":"Decomposition of EEG signal and detection of sleep spindle using sparse optimization","authors":"Chen-Xin Fang, Mei-Jing Sun, Zhen-Hua Zhao","doi":"10.1109/ICSP51882.2021.9409011","DOIUrl":null,"url":null,"abstract":"We proposed a signal decomposition algorithm for the electroencephalogram (EEG), which is separated into short oscillation, long oscillation, low frequency component, and the residual component. The decomposition problem is reduced to a sparse optimization one and the four components can be estimated by minimizing a convex objective function. A high-pass filter is applied to split the low frequency from the long oscillation. Meanwhile, two inverse short-time Fourier transforms are used to reconstruct the short oscillation and the long oscillation. After the EEG signal is decomposed, the sleep spindle is extracted from the long oscillation component. An EEG database is used to evaluate our method and the average F1 score 0.633 is obtained.","PeriodicalId":117159,"journal":{"name":"2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSP51882.2021.9409011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We proposed a signal decomposition algorithm for the electroencephalogram (EEG), which is separated into short oscillation, long oscillation, low frequency component, and the residual component. The decomposition problem is reduced to a sparse optimization one and the four components can be estimated by minimizing a convex objective function. A high-pass filter is applied to split the low frequency from the long oscillation. Meanwhile, two inverse short-time Fourier transforms are used to reconstruct the short oscillation and the long oscillation. After the EEG signal is decomposed, the sleep spindle is extracted from the long oscillation component. An EEG database is used to evaluate our method and the average F1 score 0.633 is obtained.
基于稀疏优化的脑电信号分解与睡眠纺锤波检测
提出了一种脑电图信号分解算法,将脑电图信号分解为短振荡、长振荡、低频分量和残差分量。将分解问题简化为稀疏优化问题,并通过最小化凸目标函数来估计四个分量。高通滤波器用于从长振荡中分离低频。同时,利用两次短时间傅里叶反变换重构了系统的短振荡和长振荡。对脑电信号进行分解后,从长振荡分量中提取睡眠纺锤波。利用脑电数据库对方法进行评价,得到F1平均得分0.633。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信