Action recognition with adaptive RBFNN

Srisuda Aphaipanan, Yuttana Kidjaidure
{"title":"Action recognition with adaptive RBFNN","authors":"Srisuda Aphaipanan, Yuttana Kidjaidure","doi":"10.1109/JICTEE.2014.6804095","DOIUrl":null,"url":null,"abstract":"This paper presents a method for action recognition by Adaptive Radial Basis Function Neural Network (ARBFNN) based on 3 dimensional human models. Recently, the action recognition of human is popular for the interactive applications caused many researchers tried to develop the algorithm and to find the features that have high performance. So this paper employed the features from the scalar part of Quaternion rotation that uses lower dimension than the conventional Cartesian features. Also, the Fuzzy C Means technique was used for pre-training the Radial Basis Function Neural Network (RBFNN). This method was tested with the CMU MoCap database and showed high recognition rates with small computation time.","PeriodicalId":224049,"journal":{"name":"The 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering (JICTEE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering (JICTEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JICTEE.2014.6804095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a method for action recognition by Adaptive Radial Basis Function Neural Network (ARBFNN) based on 3 dimensional human models. Recently, the action recognition of human is popular for the interactive applications caused many researchers tried to develop the algorithm and to find the features that have high performance. So this paper employed the features from the scalar part of Quaternion rotation that uses lower dimension than the conventional Cartesian features. Also, the Fuzzy C Means technique was used for pre-training the Radial Basis Function Neural Network (RBFNN). This method was tested with the CMU MoCap database and showed high recognition rates with small computation time.
基于自适应RBFNN的动作识别
提出了一种基于三维人体模型的自适应径向基函数神经网络(ARBFNN)动作识别方法。近年来,人体动作识别在交互式应用中越来越受欢迎,许多研究人员都在努力开发算法并寻找具有高性能的特征。因此本文采用了四元数旋转的标量部分的特征,它比传统的笛卡尔特征占用的维数更低。同时,利用模糊C均值技术对径向基函数神经网络(RBFNN)进行预训练。该方法在CMU动作捕捉数据库中进行了测试,结果表明该方法具有较高的识别率和较小的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信