Xi Liu, Anmol Sheth, M. Kaminsky, K. Papagiannaki, S. Seshan, P. Steenkiste
{"title":"Pushing the envelope of indoor wireless spatial reuse using directional access points and clients","authors":"Xi Liu, Anmol Sheth, M. Kaminsky, K. Papagiannaki, S. Seshan, P. Steenkiste","doi":"10.1145/1859995.1860020","DOIUrl":null,"url":null,"abstract":"Recent work demonstrates that directional antennas have significant potential to improve wireless network capacity in indoor environments. This paper provides a broader exploration of the design space of indoor directional antenna systems along two main dimensions: antenna configuration and antenna control. Studying a number of alternative configurations, we find that directionality on APs and clients can significantly improve performance, even over other configurations with stronger directionality. Moreover, it is sufficient to have a small number of narrow beam antennas to achieve such gains, thus making such a solution practical for actual deployment. Designing systems with directional APs and clients for increased spatial reuse comes, however, with a number of challenges in the way the directional antennas are controlled. Antenna control needs to encompass antenna orientation algorithms, an appropriate MAC layer protocol, and novel client-AP association solutions. To overcome these challenges, we propose Speed, a distributed directional antenna control system that is easy to deploy and significantly improves network capacity over existing solutions.","PeriodicalId":229719,"journal":{"name":"Proceedings of the sixteenth annual international conference on Mobile computing and networking","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the sixteenth annual international conference on Mobile computing and networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1859995.1860020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45
Abstract
Recent work demonstrates that directional antennas have significant potential to improve wireless network capacity in indoor environments. This paper provides a broader exploration of the design space of indoor directional antenna systems along two main dimensions: antenna configuration and antenna control. Studying a number of alternative configurations, we find that directionality on APs and clients can significantly improve performance, even over other configurations with stronger directionality. Moreover, it is sufficient to have a small number of narrow beam antennas to achieve such gains, thus making such a solution practical for actual deployment. Designing systems with directional APs and clients for increased spatial reuse comes, however, with a number of challenges in the way the directional antennas are controlled. Antenna control needs to encompass antenna orientation algorithms, an appropriate MAC layer protocol, and novel client-AP association solutions. To overcome these challenges, we propose Speed, a distributed directional antenna control system that is easy to deploy and significantly improves network capacity over existing solutions.