Leveraging Multiple Types of Domain Knowledge for Safe and Effective Drug Recommendation

Jialun Wu, B. Qian, Yang Li, Zeyu Gao, Meizhi Ju, Yifan Yang, Yefeng Zheng, Tieliang Gong, Chen Li, Xianli Zhang
{"title":"Leveraging Multiple Types of Domain Knowledge for Safe and Effective Drug Recommendation","authors":"Jialun Wu, B. Qian, Yang Li, Zeyu Gao, Meizhi Ju, Yifan Yang, Yefeng Zheng, Tieliang Gong, Chen Li, Xianli Zhang","doi":"10.1145/3511808.3557380","DOIUrl":null,"url":null,"abstract":"Predicting drug combinations according to patients' electronic health records is an essential task in intelligent healthcare systems, which can assist clinicians in ordering safe and effective prescriptions. However, existing work either missed/underutilized the important information lying in the drug molecule structure in drug encoding or has insufficient control over Drug-Drug Interactions (DDIs) rates within the predictions. To address these limitations, we propose CSEDrug, which enhances the drug encoding and DDIs controlling by leveraging multi-faceted drug knowledge, including molecule structures of drugs, Synergistic DDIs (SDDIs), and Antagonistic DDIs (ADDIs). We integrate these types of knowledge into CSEDrug by a graph-based drug encoder and multiple loss functions, including a novel triplet learning loss and a comprehensive DDI controllable loss. We evaluate the performance of CSEDrug in terms of accuracy, effectiveness, and safety on the public MIMIC-III dataset. The experimental results demonstrate that CSEDrug outperforms several state-of-the-art methods and achieves a 2.93% and a 2.77% increase in the Jaccard similarity scores and F1 scores, meanwhile, a 0.68% reduction of the ADDI rate (safer drug combinations), and 0.69% improvement of the SDDI rate (more effective drug combinations).","PeriodicalId":389624,"journal":{"name":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Predicting drug combinations according to patients' electronic health records is an essential task in intelligent healthcare systems, which can assist clinicians in ordering safe and effective prescriptions. However, existing work either missed/underutilized the important information lying in the drug molecule structure in drug encoding or has insufficient control over Drug-Drug Interactions (DDIs) rates within the predictions. To address these limitations, we propose CSEDrug, which enhances the drug encoding and DDIs controlling by leveraging multi-faceted drug knowledge, including molecule structures of drugs, Synergistic DDIs (SDDIs), and Antagonistic DDIs (ADDIs). We integrate these types of knowledge into CSEDrug by a graph-based drug encoder and multiple loss functions, including a novel triplet learning loss and a comprehensive DDI controllable loss. We evaluate the performance of CSEDrug in terms of accuracy, effectiveness, and safety on the public MIMIC-III dataset. The experimental results demonstrate that CSEDrug outperforms several state-of-the-art methods and achieves a 2.93% and a 2.77% increase in the Jaccard similarity scores and F1 scores, meanwhile, a 0.68% reduction of the ADDI rate (safer drug combinations), and 0.69% improvement of the SDDI rate (more effective drug combinations).
利用多种类型的领域知识进行安全有效的药物推荐
根据患者的电子健康记录预测药物组合是智能医疗系统的重要任务,它可以帮助临床医生开出安全有效的处方。然而,现有的工作要么在药物编码中遗漏或未充分利用药物分子结构中的重要信息,要么在预测范围内对药物-药物相互作用(ddi)率的控制不足。为了解决这些限制,我们提出了CSEDrug,它通过利用药物分子结构、增效性ddi (sddi)和拮抗性ddi (ADDIs)等多方面的药物知识来增强药物编码和ddi控制。我们通过一个基于图的药物编码器和多个损失函数,包括一个新的三重学习损失和一个全面的DDI可控损失,将这些类型的知识整合到CSEDrug中。我们评估了CSEDrug在公共MIMIC-III数据集上的准确性、有效性和安全性。实验结果表明,CSEDrug优于几种最先进的方法,其Jaccard相似性得分和F1得分分别提高了2.93%和2.77%,同时ADDI率(更安全的药物组合)降低了0.68%,SDDI率(更有效的药物组合)提高了0.69%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信