Feature Extraction from Microarray Expression Data by Integration of Semantic Knowledge

Young-Rae Cho, Xian Xu, W. Hwang, A. Zhang
{"title":"Feature Extraction from Microarray Expression Data by Integration of Semantic Knowledge","authors":"Young-Rae Cho, Xian Xu, W. Hwang, A. Zhang","doi":"10.1109/ICMLA.2007.10","DOIUrl":null,"url":null,"abstract":"Microarray techniques give biologists first peek into the molecular states of living tissues. Previous studies have proven that it is feasible to build sample classifiers using the gene expressional profiles. To build an effective sample classifier, dimension reduction process is necessary since classic pattern recognition algorithms do not work well in high dimensional space. In this paper, we present a novel feature extraction algorithm based on the concept of virtual genes by integrating microarray expression data sets with domain knowledge embedded in gene ontology (GO) annotations. We define semantic similarity to measure the functional associations between two genes using the annotation on each GO term. We then identify the groups of genes, called virtual genes, that potentially interact with each other for a biological function. The correlation in gene expression levels of virtual genes can be used to build a sample classifier. For a colon cancer data set, the integration of microarray expression data with GO annotations significantly improves the accuracy of sample classification by more than 10%.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Microarray techniques give biologists first peek into the molecular states of living tissues. Previous studies have proven that it is feasible to build sample classifiers using the gene expressional profiles. To build an effective sample classifier, dimension reduction process is necessary since classic pattern recognition algorithms do not work well in high dimensional space. In this paper, we present a novel feature extraction algorithm based on the concept of virtual genes by integrating microarray expression data sets with domain knowledge embedded in gene ontology (GO) annotations. We define semantic similarity to measure the functional associations between two genes using the annotation on each GO term. We then identify the groups of genes, called virtual genes, that potentially interact with each other for a biological function. The correlation in gene expression levels of virtual genes can be used to build a sample classifier. For a colon cancer data set, the integration of microarray expression data with GO annotations significantly improves the accuracy of sample classification by more than 10%.
基于语义知识集成的微阵列表达数据特征提取
微阵列技术使生物学家第一次窥视到活组织的分子状态。已有研究证明,利用基因表达谱构建样本分类器是可行的。由于传统的模式识别算法在高维空间中不能很好地工作,为了建立有效的样本分类器,必须进行降维处理。本文提出了一种基于虚拟基因概念的特征提取算法,该算法将微阵列表达数据集与嵌入在基因本体(GO)注释中的领域知识相结合。我们定义语义相似度来衡量两个基因之间的功能关联,使用每个GO术语上的注释。然后,我们识别出一组被称为虚拟基因的基因,这些基因可能会为了某种生物功能而相互作用。虚拟基因表达水平的相关性可用于构建样本分类器。对于结肠癌数据集,将微阵列表达数据与GO注释集成后,样本分类的准确率显著提高了10%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信