Continuum limits of pluri-Lagrangian systems

Mats Vermeeren
{"title":"Continuum limits of pluri-Lagrangian systems","authors":"Mats Vermeeren","doi":"10.1093/integr/xyy020","DOIUrl":null,"url":null,"abstract":"A pluri-Lagrangian (or Lagrangian multiform) structure is an attribute of integrability that has mainly been studied in the context of multidimensionally consistent lattice equations. It unifies multidimensional consistency with the variational character of the equations. An analogous continuous structure exists for integrable hierarchies of differential equations. We present a continuum limit procedure for pluri-Lagrangian systems. In this procedure the lattice parameters are interpreted as Miwa variables, describing a particular embedding in continuous multi-time of the mesh on which the discrete system lives. Then we seek differential equations whose solutions interpolate the embedded discrete solutions. The continuous systems found this way are hierarchies of differential equations. We show that this continuum limit can also be applied to the corresponding pluri-Lagrangian structures. We apply our method to the discrete Toda lattice and to equations H1 and Q1$_{\\delta = 0}$ from the ABS list.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/integr/xyy020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

A pluri-Lagrangian (or Lagrangian multiform) structure is an attribute of integrability that has mainly been studied in the context of multidimensionally consistent lattice equations. It unifies multidimensional consistency with the variational character of the equations. An analogous continuous structure exists for integrable hierarchies of differential equations. We present a continuum limit procedure for pluri-Lagrangian systems. In this procedure the lattice parameters are interpreted as Miwa variables, describing a particular embedding in continuous multi-time of the mesh on which the discrete system lives. Then we seek differential equations whose solutions interpolate the embedded discrete solutions. The continuous systems found this way are hierarchies of differential equations. We show that this continuum limit can also be applied to the corresponding pluri-Lagrangian structures. We apply our method to the discrete Toda lattice and to equations H1 and Q1$_{\delta = 0}$ from the ABS list.
多拉格朗日系统的连续统极限
复数拉格朗日(或拉格朗日多重形式)结构是可积性的一种属性,主要是在多维一致格方程的背景下研究的。它将方程的多维一致性与变分性统一起来。对于微分方程的可积层次存在一个类似的连续结构。给出了多元拉格朗日系统的连续统极限过程。在这个过程中,晶格参数被解释为Miwa变量,描述了离散系统所处的连续多时间网格的特定嵌入。然后,我们寻求微分方程的解插值嵌入的离散解。用这种方法得到的连续系统是微分方程的层次。我们证明这个连续体极限也可以应用于相应的复拉格朗日结构。我们将该方法应用于离散Toda格以及ABS列表中的方程H1和方程Q1$_{\delta = 0}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信