Towards Improving Car Point-Cloud Tracking Via Detection Updates

Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, Gaetano Pernisco, V. Renó, E. Stella
{"title":"Towards Improving Car Point-Cloud Tracking Via Detection Updates","authors":"Yashar Deldjoo, Tommaso Di Noia, Eugenio Di Sciascio, Gaetano Pernisco, V. Renó, E. Stella","doi":"10.1145/3469951.3469957","DOIUrl":null,"url":null,"abstract":"Most autonomous driving applications leverage RGB images representing the surrounding environment that contain useful appearance features but with a cost in terms of geometric features. On the other side, 3D point clouds generated by LIDAR sensors can provide more geometric 3D information with high accuracy and robustness but with a loss on appearance features. Regardless of the adopted technology, object tracking in autonomous driving scenarios suffers from the so-called error drift in detecting objects over time/frames. This work investigates the car tracking problem in an urban scenario, leveraging 3D point clouds. In particular, we have set our goal to mitigate the typical error drift that characterizes the classic tracking algorithm and, to this aim, proposed a system able to reduce the drift error by detection. An extensive experimental evaluation on the KITTI dataset shows the improvement in our solution's performance compared to state-of-the-art approaches.","PeriodicalId":313453,"journal":{"name":"Proceedings of the 2021 3rd International Conference on Image Processing and Machine Vision","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 3rd International Conference on Image Processing and Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469951.3469957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Most autonomous driving applications leverage RGB images representing the surrounding environment that contain useful appearance features but with a cost in terms of geometric features. On the other side, 3D point clouds generated by LIDAR sensors can provide more geometric 3D information with high accuracy and robustness but with a loss on appearance features. Regardless of the adopted technology, object tracking in autonomous driving scenarios suffers from the so-called error drift in detecting objects over time/frames. This work investigates the car tracking problem in an urban scenario, leveraging 3D point clouds. In particular, we have set our goal to mitigate the typical error drift that characterizes the classic tracking algorithm and, to this aim, proposed a system able to reduce the drift error by detection. An extensive experimental evaluation on the KITTI dataset shows the improvement in our solution's performance compared to state-of-the-art approaches.
通过检测更新改进汽车点云跟踪
大多数自动驾驶应用程序都利用RGB图像来表示周围环境,这些图像包含有用的外观特征,但在几何特征方面存在成本。另一方面,激光雷达传感器生成的三维点云可以提供更多的几何三维信息,具有较高的精度和鲁棒性,但在外观特征上有所损失。无论采用何种技术,自动驾驶场景中的目标跟踪都会受到所谓的随时间/帧检测目标的误差漂移的影响。这项工作研究了城市场景中利用3D点云的汽车跟踪问题。特别是,我们的目标是减轻典型跟踪算法的典型误差漂移,并为此提出了一种能够通过检测来减少漂移误差的系统。对KITTI数据集的广泛实验评估表明,与最先进的方法相比,我们的解决方案的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信