Multilevel color image segmentation using modified genetic algorithm (MfGA) inspired fuzzy c-means clustering

Sunanda Das, S. De
{"title":"Multilevel color image segmentation using modified genetic algorithm (MfGA) inspired fuzzy c-means clustering","authors":"Sunanda Das, S. De","doi":"10.1109/ICRCICN.2016.7813635","DOIUrl":null,"url":null,"abstract":"Convergence to local minima point is one of the major disadvantages of conventional fuzzy c-means (FCM). Due to this drawback, segmentation result may hamper for not selecting the cluster centroids properly. To overcome this, a modified genetic (MfGA) algorithm is proposed to improve the performance of FCM. The optimized class levels derived from the MfGA are employed as initial input to FCM for finding global optimal solutions in a large search space. An extensive performance comparison of the proposed MfGA inspired conventional FCM and GA based FCM on two multilevel color images establishes the superiority of the proposed approach.","PeriodicalId":254393,"journal":{"name":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2016.7813635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Convergence to local minima point is one of the major disadvantages of conventional fuzzy c-means (FCM). Due to this drawback, segmentation result may hamper for not selecting the cluster centroids properly. To overcome this, a modified genetic (MfGA) algorithm is proposed to improve the performance of FCM. The optimized class levels derived from the MfGA are employed as initial input to FCM for finding global optimal solutions in a large search space. An extensive performance comparison of the proposed MfGA inspired conventional FCM and GA based FCM on two multilevel color images establishes the superiority of the proposed approach.
基于改进遗传算法(MfGA)的模糊c均值聚类的多级彩色图像分割
收敛到局部极小点是传统模糊c均值算法的主要缺点之一。由于这一缺点,分割结果可能会因为没有正确选择聚类质心而受到影响。为了克服这个问题,提出了一种改进的遗传算法(MfGA)来提高FCM的性能。从MfGA中得到的优化类水平被用作FCM的初始输入,用于在大搜索空间中寻找全局最优解。在两幅多层彩色图像上,对该方法进行了广泛的性能比较,证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信