Determination of generators' contributions to, loads in pool based power system using Least Squares Support Vector Machine

M. Mustafa, M. Sulaiman, H. Shareef, S. Khalid
{"title":"Determination of generators' contributions to, loads in pool based power system using Least Squares Support Vector Machine","authors":"M. Mustafa, M. Sulaiman, H. Shareef, S. Khalid","doi":"10.1109/PEOCO.2010.5559183","DOIUrl":null,"url":null,"abstract":"This paper attempts to allocate the generators' contributions to loads in pool based power system by incorporating the Least Squares Support Vector Machine (LS-SVM). The idea is to use supervised learning approach to train the LS-SVM. The technique that uses proportional tree method (PTM) which is applying the convention of proportional sharing principle is utilized as a teacher. Based on converged load flow and followed by PTM for power tracing procedure, the description of inputs and outputs of the training data for the LS-SVM are created. The LS-SVM will learn to identify which generators are supplying to which loads. The proposed technique is demonstrated using IEEE 14-bus system to illustrate the effectiveness of the LS-SVM technique compared to that of the PTM. The comparison result with Artificial Neural Network (ANN) technique is also will be discussed.","PeriodicalId":379868,"journal":{"name":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","volume":"188 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Power Engineering and Optimization Conference (PEOCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEOCO.2010.5559183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper attempts to allocate the generators' contributions to loads in pool based power system by incorporating the Least Squares Support Vector Machine (LS-SVM). The idea is to use supervised learning approach to train the LS-SVM. The technique that uses proportional tree method (PTM) which is applying the convention of proportional sharing principle is utilized as a teacher. Based on converged load flow and followed by PTM for power tracing procedure, the description of inputs and outputs of the training data for the LS-SVM are created. The LS-SVM will learn to identify which generators are supplying to which loads. The proposed technique is demonstrated using IEEE 14-bus system to illustrate the effectiveness of the LS-SVM technique compared to that of the PTM. The comparison result with Artificial Neural Network (ANN) technique is also will be discussed.
用最小二乘支持向量机确定并联电力系统中发电机对负荷的贡献
本文尝试将最小二乘支持向量机(LS-SVM)应用于池型电力系统中发电机对负荷的贡献分配。其思想是使用监督学习的方法来训练LS-SVM。运用比例共享原则约定的比例树法(PTM)技术作为教师。基于收敛潮流,采用PTM进行功率跟踪,建立LS-SVM训练数据的输入输出描述。LS-SVM将学习识别哪些发电机向哪些负载供电。采用IEEE 14总线系统验证了LS-SVM技术与PTM技术的有效性。并讨论了与人工神经网络(ANN)技术的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信