Higher-Order Shell Element for the Static and Free-Vibration Analysis of Sandwich Structures

E. Carrera, S. Valvano, M. Filippi
{"title":"Higher-Order Shell Element for the Static and Free-Vibration Analysis of Sandwich Structures","authors":"E. Carrera, S. Valvano, M. Filippi","doi":"10.1115/IMECE2018-86784","DOIUrl":null,"url":null,"abstract":"An advanced shell finite element with a variable kinematic field based on a new zig-zag power function is proposed for the analysis of sandwich shell structures. The kinematic field is written by using an arbitrary number of continuous piecewise polynomial functions. The polynomial expansion order of a generic subdomain is a combination of zig-zag power functions depending on the shell thickness coordinate. As in the classical layer-wise approach, the shell thickness can be divided into a variable number of mathematical subdomains. The expansion order of each subdomain is an input parameter of the analysis. This feature enables the solution to be locally refined over generic regions of the shell thickness by enriching the kinematic field. The advanced finite shell elements with variable kinematics are formulated in the framework of the Carrera Unified Formulation. The finite element arrays are formulated in terms of fundamental nuclei, which are invariants of the theory approximation order and the modelling technique (Equivalent-Single-Layer, Layer-Wise). In this work, the attention is focused on linear static stress analysis and the free-vibration analysis of sandwich shell structures.","PeriodicalId":119220,"journal":{"name":"Volume 1: Advances in Aerospace Technology","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-86784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An advanced shell finite element with a variable kinematic field based on a new zig-zag power function is proposed for the analysis of sandwich shell structures. The kinematic field is written by using an arbitrary number of continuous piecewise polynomial functions. The polynomial expansion order of a generic subdomain is a combination of zig-zag power functions depending on the shell thickness coordinate. As in the classical layer-wise approach, the shell thickness can be divided into a variable number of mathematical subdomains. The expansion order of each subdomain is an input parameter of the analysis. This feature enables the solution to be locally refined over generic regions of the shell thickness by enriching the kinematic field. The advanced finite shell elements with variable kinematics are formulated in the framework of the Carrera Unified Formulation. The finite element arrays are formulated in terms of fundamental nuclei, which are invariants of the theory approximation order and the modelling technique (Equivalent-Single-Layer, Layer-Wise). In this work, the attention is focused on linear static stress analysis and the free-vibration analysis of sandwich shell structures.
用于夹层结构静力和自由振动分析的高阶壳单元
提出了一种基于新型之字形幂函数的变运动场高级壳单元,用于分析夹芯壳结构。运动场是用任意数目的连续分段多项式函数来表示的。一般子域的多项式展开阶是依赖于壳体厚度坐标的锯齿形幂函数的组合。与经典的分层方法一样,壳层厚度可以划分为可变数量的数学子域。每个子域的展开阶是分析的输入参数。这一特征使解决方案能够通过丰富的运动场在壳厚度的一般区域局部细化。在Carrera统一公式的框架下,对具有变运动学的高级有限壳单元进行了推导。有限元阵列是根据基本核来制定的,基本核是理论近似顺序的不变量和建模技术(等效单层,分层)。本文主要研究了夹层壳结构的线性静应力分析和自由振动分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信