Multi-agent reinforcement learning approach based on reduced value function approximations

M. Abouheaf, W. Gueaieb
{"title":"Multi-agent reinforcement learning approach based on reduced value function approximations","authors":"M. Abouheaf, W. Gueaieb","doi":"10.1109/IRIS.2017.8250107","DOIUrl":null,"url":null,"abstract":"This paper introduces novel online adaptive Reinforcement Learning approach based on Policy Iteration for multi-agent systems interacting on graphs. The approach uses reduced value functions to solve the coupled Bellman and Hamilton-Jacobi-Bellman equations for multi-agent systems. This done using only partial knowledge about the agents' dynamics. The convergence of the approach is shown to depend on the properties of the communication graph. The Policy Iteration approach is implemented in real-time using neural networks, where reduced value functions are considered to reduce the computational complexity.","PeriodicalId":213724,"journal":{"name":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","volume":"356 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRIS.2017.8250107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper introduces novel online adaptive Reinforcement Learning approach based on Policy Iteration for multi-agent systems interacting on graphs. The approach uses reduced value functions to solve the coupled Bellman and Hamilton-Jacobi-Bellman equations for multi-agent systems. This done using only partial knowledge about the agents' dynamics. The convergence of the approach is shown to depend on the properties of the communication graph. The Policy Iteration approach is implemented in real-time using neural networks, where reduced value functions are considered to reduce the computational complexity.
基于约值函数逼近的多智能体强化学习方法
介绍了一种基于策略迭代的多智能体在线自适应强化学习方法。该方法利用约值函数求解多智能体系统的耦合Bellman方程和Hamilton-Jacobi-Bellman方程。这只使用了关于代理动态的部分知识。该方法的收敛性取决于通信图的性质。策略迭代方法使用神经网络实时实现,其中考虑了约值函数以降低计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信