Influence of particle filter parameters on error correction accuracy in traffic surveillance using sensor networks

Florica Naghiu, D. Pescaru, Victor Gavrila, I. Jian, D. Curiac
{"title":"Influence of particle filter parameters on error correction accuracy in traffic surveillance using sensor networks","authors":"Florica Naghiu, D. Pescaru, Victor Gavrila, I. Jian, D. Curiac","doi":"10.1109/INES.2010.5483851","DOIUrl":null,"url":null,"abstract":"Location estimation is an important part of a traffic surveillance system. Markov chain Monte Carlo methods based on particle filters have proved to be an effective solution in sensing error correction. We investigate in this paper the influence of particle filter parameters variation on sensing errors correction accuracy. Considered traffic surveillance system is based on a wireless sensor network. Several forms of probability density matrix and various methods for particle weight computation where considered, allowing us to find the dependencies between parameters. Finally, we use simulation to find optimal solutions in different traffic conditions.","PeriodicalId":118326,"journal":{"name":"2010 IEEE 14th International Conference on Intelligent Engineering Systems","volume":"726 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 14th International Conference on Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES.2010.5483851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Location estimation is an important part of a traffic surveillance system. Markov chain Monte Carlo methods based on particle filters have proved to be an effective solution in sensing error correction. We investigate in this paper the influence of particle filter parameters variation on sensing errors correction accuracy. Considered traffic surveillance system is based on a wireless sensor network. Several forms of probability density matrix and various methods for particle weight computation where considered, allowing us to find the dependencies between parameters. Finally, we use simulation to find optimal solutions in different traffic conditions.
粒子滤波参数对传感器网络交通监控误差校正精度的影响
位置估计是交通监控系统的重要组成部分。基于粒子滤波的马尔可夫链蒙特卡罗方法是一种有效的传感误差校正方法。本文研究了粒子滤波参数变化对传感误差校正精度的影响。考虑交通监控系统是基于无线传感器网络的。考虑了几种形式的概率密度矩阵和各种粒子权重计算方法,使我们能够找到参数之间的依赖关系。最后,利用仿真方法找出不同交通条件下的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信