{"title":"Real-time coarse-to-fine topologically preserving segmentation","authors":"Jian Yao, Marko Boben, S. Fidler, R. Urtasun","doi":"10.1109/CVPR.2015.7298913","DOIUrl":null,"url":null,"abstract":"In this paper, we tackle the problem of unsupervised segmentation in the form of superpixels. Our main emphasis is on speed and accuracy. We build on [31] to define the problem as a boundary and topology preserving Markov random field. We propose a coarse to fine optimization technique that speeds up inference in terms of the number of updates by an order of magnitude. Our approach is shown to outperform [31] while employing a single iteration. We evaluate and compare our approach to state-of-the-art superpixel algorithms on the BSD and KITTI benchmarks. Our approach significantly outperforms the baselines in the segmentation metrics and achieves the lowest error on the stereo task.","PeriodicalId":444472,"journal":{"name":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2015.7298913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119
Abstract
In this paper, we tackle the problem of unsupervised segmentation in the form of superpixels. Our main emphasis is on speed and accuracy. We build on [31] to define the problem as a boundary and topology preserving Markov random field. We propose a coarse to fine optimization technique that speeds up inference in terms of the number of updates by an order of magnitude. Our approach is shown to outperform [31] while employing a single iteration. We evaluate and compare our approach to state-of-the-art superpixel algorithms on the BSD and KITTI benchmarks. Our approach significantly outperforms the baselines in the segmentation metrics and achieves the lowest error on the stereo task.