Theoretically Optimal Distributed Anomaly Detection

A. Lazarevic, Nisheeth Srivastava, Ashutosh Tiwari, Joshua D. Isom, N. Oza, J. Srivastava
{"title":"Theoretically Optimal Distributed Anomaly Detection","authors":"A. Lazarevic, Nisheeth Srivastava, Ashutosh Tiwari, Joshua D. Isom, N. Oza, J. Srivastava","doi":"10.1109/ICDMW.2009.40","DOIUrl":null,"url":null,"abstract":"A novel general framework for distributed anomaly detection with theoretical performance guarantees is proposed. Our algorithmic approach combines existing anomaly detection procedures with a novel method for computing global statistics using local sufficient statistics. Under a Gaussian assumption, our distributed algorithm is guaranteed to perform as well as its centralized counterpart, a condition we call ‘zero information loss’. We further report experimental results on synthetic as well as real-world data to demonstrate the viability of our approach.","PeriodicalId":351078,"journal":{"name":"2009 IEEE International Conference on Data Mining Workshops","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2009.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A novel general framework for distributed anomaly detection with theoretical performance guarantees is proposed. Our algorithmic approach combines existing anomaly detection procedures with a novel method for computing global statistics using local sufficient statistics. Under a Gaussian assumption, our distributed algorithm is guaranteed to perform as well as its centralized counterpart, a condition we call ‘zero information loss’. We further report experimental results on synthetic as well as real-world data to demonstrate the viability of our approach.
理论上最优分布式异常检测
提出了一种具有理论性能保证的分布式异常检测通用框架。我们的算法方法将现有的异常检测程序与使用局部充分统计计算全局统计的新方法相结合。在高斯假设下,我们的分布式算法保证和它的中心化算法一样好,我们称之为“零信息损失”。我们进一步报告了合成和现实世界数据的实验结果,以证明我们的方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信