Poster Abstract: Data-Driven Estimation of Collision Risks for Autonomous Vehicles with Formal Guarantees*

Abolfazl Lavaei, L. D. Lillo, Margherita Atzei, A. Censi, E. Frazzoli
{"title":"Poster Abstract: Data-Driven Estimation of Collision Risks for Autonomous Vehicles with Formal Guarantees*","authors":"Abolfazl Lavaei, L. D. Lillo, Margherita Atzei, A. Censi, E. Frazzoli","doi":"10.1145/3501710.3524735","DOIUrl":null,"url":null,"abstract":"This work proposes a compositional data-driven approach for the formal estimation of collision risks for autonomous vehicles (AVs) with black-box dynamics acting in stochastic multi-agent environ-ments. The proposed technique is based on the construction of sub-barrier certificates via a set of data collected from trajectories of each stochastic agent while providing a-priori guaranteed confidence on the data-driven estimation. In our proposed setting, we first cast the original collision risk problem of each agent as a robust optimization program (ROP) and provide a scenario optimization program (SOP) corresponding to the original ROP by collecting finite numbers of data from trajectories of each agent. We then establish a probabilistic bridge between the optimal value of SOP and that of ROP, and accordingly, formally construct a sub-barrier certificate for each unknown agent based on number of data and a required level of confidence. We eventually propose a compositional technique based on small-gain reasoning to quantify the collision risk for multi-agent AVs with some guaranteed confidence based on data-driven sub-barrier certificates of individual agents.","PeriodicalId":194680,"journal":{"name":"Proceedings of the 25th ACM International Conference on Hybrid Systems: Computation and Control","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Conference on Hybrid Systems: Computation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501710.3524735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a compositional data-driven approach for the formal estimation of collision risks for autonomous vehicles (AVs) with black-box dynamics acting in stochastic multi-agent environ-ments. The proposed technique is based on the construction of sub-barrier certificates via a set of data collected from trajectories of each stochastic agent while providing a-priori guaranteed confidence on the data-driven estimation. In our proposed setting, we first cast the original collision risk problem of each agent as a robust optimization program (ROP) and provide a scenario optimization program (SOP) corresponding to the original ROP by collecting finite numbers of data from trajectories of each agent. We then establish a probabilistic bridge between the optimal value of SOP and that of ROP, and accordingly, formally construct a sub-barrier certificate for each unknown agent based on number of data and a required level of confidence. We eventually propose a compositional technique based on small-gain reasoning to quantify the collision risk for multi-agent AVs with some guaranteed confidence based on data-driven sub-barrier certificates of individual agents.
摘要:具有正式担保的自动驾驶汽车碰撞风险的数据驱动估计*
这项工作提出了一种组合数据驱动的方法,用于随机多智能体环境中具有黑盒动力学的自动驾驶汽车(AVs)碰撞风险的形式化估计。该技术通过从每个随机代理的轨迹中收集的一组数据来构建子屏障证书,同时为数据驱动的估计提供先验保证置信度。在我们提出的设置中,我们首先将每个agent的原始碰撞风险问题转换为鲁棒优化程序(ROP),并通过从每个agent的轨迹中收集有限数量的数据,提供与原始ROP对应的场景优化程序(SOP)。然后,我们在SOP的最优值和ROP的最优值之间建立了一个概率桥梁,并相应地,基于数据数量和所需的置信度,为每个未知代理正式构建了子屏障证书。最后,我们提出了一种基于小增益推理的组合技术来量化多智能体自动驾驶汽车的碰撞风险,并基于单个智能体的数据驱动子屏障证书来保证置信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信