Bayesian subspace estimation for beamforming and RFI cancellation using deflation technique

Xu Wanfeng, Han Yubing, Sheng Weixing, Ma Xiaofeng, Z. Renli, Cui Jie
{"title":"Bayesian subspace estimation for beamforming and RFI cancellation using deflation technique","authors":"Xu Wanfeng, Han Yubing, Sheng Weixing, Ma Xiaofeng, Z. Renli, Cui Jie","doi":"10.1109/MAPE.2017.8250912","DOIUrl":null,"url":null,"abstract":"The output performance of a radio telescope is always suppressed severely by strong interferences. To solve this problem, a new Bayesian subspace estimation algorithm is proposed for beamforming and RFI cancellation. Assuming the steering vectors of interferences follow complex Gaussian distribution, the proposed algorithm recursively estimates these steering vectors based on Bayesian principle and subspace deflation technique, and then the span of interference subspace is realized. Numerical simulations show that, compared with eigenvalue decomposition (EVD) and fast approximated power iteration (FAPI), the proposed algorithm can accomplish a lower subspace estimation error and a better performance in beamforming and interference cancellation, especially when weak signals are considered.","PeriodicalId":320947,"journal":{"name":"2017 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th IEEE International Symposium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MAPE.2017.8250912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The output performance of a radio telescope is always suppressed severely by strong interferences. To solve this problem, a new Bayesian subspace estimation algorithm is proposed for beamforming and RFI cancellation. Assuming the steering vectors of interferences follow complex Gaussian distribution, the proposed algorithm recursively estimates these steering vectors based on Bayesian principle and subspace deflation technique, and then the span of interference subspace is realized. Numerical simulations show that, compared with eigenvalue decomposition (EVD) and fast approximated power iteration (FAPI), the proposed algorithm can accomplish a lower subspace estimation error and a better performance in beamforming and interference cancellation, especially when weak signals are considered.
使用通货紧缩技术的波束形成和RFI抵消的贝叶斯子空间估计
射电望远镜的输出性能总是受到强干扰的严重抑制。为了解决这一问题,提出了一种新的贝叶斯子空间估计算法,用于波束形成和RFI消除。该算法假设干扰的转向向量服从复高斯分布,基于贝叶斯原理和子空间压缩技术对这些转向向量进行递归估计,从而实现干扰子空间的张成。数值仿真结果表明,与特征值分解(EVD)和快速近似功率迭代(FAPI)算法相比,该算法具有较低的子空间估计误差和较好的波束形成和干扰消除性能,特别是在考虑微弱信号时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信