Multiscale Control of Generic Second Order Traffic Models by Driver-Assist Vehicles

F. A. Chiarello, B. Piccoli, A. Tosin
{"title":"Multiscale Control of Generic Second Order Traffic Models by Driver-Assist Vehicles","authors":"F. A. Chiarello, B. Piccoli, A. Tosin","doi":"10.1137/20M1360128","DOIUrl":null,"url":null,"abstract":"We study the derivation of generic high order macroscopic traffic models from a follow-the-leader particle description via a kinetic approach. First, we recover a third order traffic model as the hydrodynamic limit of an Enskog-type kinetic equation. Next, we introduce in the vehicle interactions a binary control modelling the automatic feedback provided by driver-assist vehicles and we upscale such a new particle description by means of another Enskog-based hydrodynamic limit. The resulting macroscopic model is now a Generic Second Order Model (GSOM), which contains in turn a control term inherited from the microscopic interactions. We show that such a control may be chosen so as to optimise global traffic trends, such as the vehicle flux or the road congestion, constrained by the GSOM dynamics. By means of numerical simulations, we investigate the effect of this control hierarchy in some specific case studies, which exemplify the multiscale path from the vehicle-wise implementation of a driver-assist control to its optimal hydrodynamic design.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"240 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/20M1360128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We study the derivation of generic high order macroscopic traffic models from a follow-the-leader particle description via a kinetic approach. First, we recover a third order traffic model as the hydrodynamic limit of an Enskog-type kinetic equation. Next, we introduce in the vehicle interactions a binary control modelling the automatic feedback provided by driver-assist vehicles and we upscale such a new particle description by means of another Enskog-based hydrodynamic limit. The resulting macroscopic model is now a Generic Second Order Model (GSOM), which contains in turn a control term inherited from the microscopic interactions. We show that such a control may be chosen so as to optimise global traffic trends, such as the vehicle flux or the road congestion, constrained by the GSOM dynamics. By means of numerical simulations, we investigate the effect of this control hierarchy in some specific case studies, which exemplify the multiscale path from the vehicle-wise implementation of a driver-assist control to its optimal hydrodynamic design.
驾驶辅助车辆通用二阶交通模型的多尺度控制
本文研究了用动力学方法推导高阶宏观交通模型的一般方法。首先,我们恢复了一个三阶交通模型作为enskog型动力学方程的水动力极限。其次,我们在车辆相互作用中引入了一种二元控制模型,该模型由驾驶辅助车辆提供的自动反馈建模,并通过另一种基于enskog的流体动力极限对这种新的粒子描述进行了升级。由此产生的宏观模型现在是一个通用二阶模型(GSOM),它反过来包含从微观相互作用继承的控制项。我们表明,可以选择这样的控制,以优化受GSOM动力学约束的全球交通趋势,如车辆流量或道路拥堵。通过数值模拟,我们在一些具体的案例研究中研究了这种控制层次的影响,这些研究举例说明了从车辆方面实施驾驶员辅助控制到其最佳流体动力设计的多尺度路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信