Automatic acoustic classification of feline sex

Maksim Kukushkin, S. Ntalampiras
{"title":"Automatic acoustic classification of feline sex","authors":"Maksim Kukushkin, S. Ntalampiras","doi":"10.1145/3478384.3478385","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for classifying the feline sex based on the respective vocalizations. Due to the size of the available dataset, we rely on tree-based classifiers which can efficiently learn classification rules in such poor data availability cases. More specifically, this work investigates the ability of random forests and boosting classifiers when trained with a wide range of acoustic features derived both from time and frequency domain. The considered classifiers are evaluated using standardized figures of merit including f1-score, recall, precision, and accuracy. The best-performing classifier was the CatBoost, while the obtained results are in line with the state-of-the-art accuracy levels in the field of animal sex classification.","PeriodicalId":173309,"journal":{"name":"Proceedings of the 16th International Audio Mostly Conference","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th International Audio Mostly Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3478384.3478385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents a novel method for classifying the feline sex based on the respective vocalizations. Due to the size of the available dataset, we rely on tree-based classifiers which can efficiently learn classification rules in such poor data availability cases. More specifically, this work investigates the ability of random forests and boosting classifiers when trained with a wide range of acoustic features derived both from time and frequency domain. The considered classifiers are evaluated using standardized figures of merit including f1-score, recall, precision, and accuracy. The best-performing classifier was the CatBoost, while the obtained results are in line with the state-of-the-art accuracy levels in the field of animal sex classification.
猫科动物性别的自动声学分类
本文提出了一种基于猫科动物各自发声的性别分类新方法。由于可用数据集的大小,我们依赖于基于树的分类器,它可以在数据可用性差的情况下有效地学习分类规则。更具体地说,这项工作研究了随机森林和增强分类器在接受来自时域和频域的广泛声学特征训练时的能力。考虑的分类器使用标准化的优点数字进行评估,包括f1分数,召回率,精度和准确性。表现最好的分类器是CatBoost,而获得的结果符合动物性别分类领域最先进的精度水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信