Evolving deep neural networks for Time Series Forecasting

Lídio Mauro Lima de Campos, J. H. A. Pereira, Danilo Souza Duarte, R. C. L. Oliveira
{"title":"Evolving deep neural networks for Time Series Forecasting","authors":"Lídio Mauro Lima de Campos, J. H. A. Pereira, Danilo Souza Duarte, R. C. L. Oliveira","doi":"10.21528/LNLM-VOL18-NO2-ART4","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to introduce a biologically inspired approach that can automatically generate Deep Neural networks with good prediction capacity, smaller error and large tolerance to noises. In order to do this, three biological paradigms were used: Genetic Algorithm (GA), Lindenmayer System and Neural Networks (DNNs). The final sections of the paper present some experiments aimed at investigating the possibilities of the method in the forecast the price of energy in the Brazilian market. The proposed model considers a multi-step ahead price prediction (12, 24, and 36 weeks ahead). The results for MLP and LSTM networks show a good ability to predict peaks and satisfactory accuracy according to error measures comparing with other methods.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/LNLM-VOL18-NO2-ART4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The aim of this paper is to introduce a biologically inspired approach that can automatically generate Deep Neural networks with good prediction capacity, smaller error and large tolerance to noises. In order to do this, three biological paradigms were used: Genetic Algorithm (GA), Lindenmayer System and Neural Networks (DNNs). The final sections of the paper present some experiments aimed at investigating the possibilities of the method in the forecast the price of energy in the Brazilian market. The proposed model considers a multi-step ahead price prediction (12, 24, and 36 weeks ahead). The results for MLP and LSTM networks show a good ability to predict peaks and satisfactory accuracy according to error measures comparing with other methods.
用于时间序列预测的进化深度神经网络
本文的目的是介绍一种受生物学启发的方法,该方法可以自动生成具有良好预测能力、较小误差和较大噪声容忍度的深度神经网络。为此,使用了三种生物范式:遗传算法(GA)、林登迈尔系统(Lindenmayer System)和神经网络(dnn)。论文的最后部分提出了一些实验,旨在研究该方法在预测巴西市场能源价格方面的可能性。提出的模型考虑了多步提前价格预测(提前12、24和36周)。结果表明,与其他方法相比,MLP和LSTM网络具有较好的峰预测能力和较好的误差测量精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信