{"title":"Using configuration management and product line software paradigms to support the experimentation process in software engineering","authors":"Edison Gonzalo Espinosa Gallardo","doi":"10.1109/RCIS.2012.6240454","DOIUrl":null,"url":null,"abstract":"There is no empirical evidence whatsoever to support most of the beliefs on which software construction is based. We do not yet know the adequacy, limits, qualities, costs and risks of the technologies used to develop software. Experimentation helps to check and convert beliefs and opinions into facts. This research is concerned with the replication area. Replication is a key component for gathering empirical evidence on software development that can be used in industry to build better software more efficiently. Replication has not been an easy thing to do in software engineering (SE) because the experimental paradigm applied to software development is still immature. Nowadays, a replication is executed mostly using a traditional replication package. But traditional replication packages do not appear, for some reason, to have been as effective as expected for transferring information among researchers in SE experimentation. The trouble spot appears to be the replication setup, caused by version management problems with materials, instruments, documents, etc. This has proved to be an obstacle to obtaining enough details about the experiment to be able to reproduce it as exactly as possible. We address the problem of information exchange among experimenters by developing a schema to characterize replications. We will adapt configuration management and product line ideas to support the experimentation process. This will enable researchers to make systematic decisions based on explicit knowledge rather than assumptions about replications. This research will output a replication support web environment. This environment will not only archive but also manage experimental materials flexibly enough to allow both similar and differentiated replications with massive experimental data storage. The platform should be accessible to several research groups working together on the same families of experiments.","PeriodicalId":130476,"journal":{"name":"2012 Sixth International Conference on Research Challenges in Information Science (RCIS)","volume":"32 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Sixth International Conference on Research Challenges in Information Science (RCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RCIS.2012.6240454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
There is no empirical evidence whatsoever to support most of the beliefs on which software construction is based. We do not yet know the adequacy, limits, qualities, costs and risks of the technologies used to develop software. Experimentation helps to check and convert beliefs and opinions into facts. This research is concerned with the replication area. Replication is a key component for gathering empirical evidence on software development that can be used in industry to build better software more efficiently. Replication has not been an easy thing to do in software engineering (SE) because the experimental paradigm applied to software development is still immature. Nowadays, a replication is executed mostly using a traditional replication package. But traditional replication packages do not appear, for some reason, to have been as effective as expected for transferring information among researchers in SE experimentation. The trouble spot appears to be the replication setup, caused by version management problems with materials, instruments, documents, etc. This has proved to be an obstacle to obtaining enough details about the experiment to be able to reproduce it as exactly as possible. We address the problem of information exchange among experimenters by developing a schema to characterize replications. We will adapt configuration management and product line ideas to support the experimentation process. This will enable researchers to make systematic decisions based on explicit knowledge rather than assumptions about replications. This research will output a replication support web environment. This environment will not only archive but also manage experimental materials flexibly enough to allow both similar and differentiated replications with massive experimental data storage. The platform should be accessible to several research groups working together on the same families of experiments.