Image augmentation by blocky artifact in Deep Convolutional Neural Network for handwritten digit recognition

Md Shopon, Nabeel Mohammed, Md. Anowarul Abedin
{"title":"Image augmentation by blocky artifact in Deep Convolutional Neural Network for handwritten digit recognition","authors":"Md Shopon, Nabeel Mohammed, Md. Anowarul Abedin","doi":"10.1109/ICIVPR.2017.7890867","DOIUrl":null,"url":null,"abstract":"Deep Convolutional Neural Networks - also known as DCNN - are powerful models for different visual pattern classification problems. Many works in this field use image augmentation at the training phase to achieve better accuracy. This paper presents blocky artifact as an augmentation technique to increase the accuracy of DCNN for handwritten digit recognition, both English and Bangla digits, i.e., 0–9. This paper conducts a number of experiments on three different datasets: MNIST Dataset, CMATERDB 3.1.1 Dataset and Indian Statistical Institute (ISI) Dataset. For each dataset, DCNNs with the proposed augmentation technique give better results than those without such augmentation. Unsupervised pre-training with the blocky artifact achieves 99.56%, 99.83% and 99.35% accuracy respectively on MNIST, CMATERDDB and ISI datasets producing, in the process, so far the best accuracy rate for CMATERDB and ISI datasets.","PeriodicalId":126745,"journal":{"name":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Imaging, Vision & Pattern Recognition (icIVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVPR.2017.7890867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Deep Convolutional Neural Networks - also known as DCNN - are powerful models for different visual pattern classification problems. Many works in this field use image augmentation at the training phase to achieve better accuracy. This paper presents blocky artifact as an augmentation technique to increase the accuracy of DCNN for handwritten digit recognition, both English and Bangla digits, i.e., 0–9. This paper conducts a number of experiments on three different datasets: MNIST Dataset, CMATERDB 3.1.1 Dataset and Indian Statistical Institute (ISI) Dataset. For each dataset, DCNNs with the proposed augmentation technique give better results than those without such augmentation. Unsupervised pre-training with the blocky artifact achieves 99.56%, 99.83% and 99.35% accuracy respectively on MNIST, CMATERDDB and ISI datasets producing, in the process, so far the best accuracy rate for CMATERDB and ISI datasets.
基于块伪影的深度卷积神经网络手写体数字识别图像增强
深度卷积神经网络-也被称为DCNN -是不同视觉模式分类问题的强大模型。该领域的许多工作在训练阶段使用图像增强来达到更好的精度。本文提出了块伪影作为一种增强技术来提高DCNN的手写数字识别精度,包括英语和孟加拉语数字,即0-9。本文在三个不同的数据集上进行了大量实验:MNIST数据集、CMATERDB 3.1.1数据集和印度统计研究所(ISI)数据集。对于每个数据集,采用本文提出的增强技术的DCNNs比未采用这种增强技术的DCNNs得到更好的结果。基于块构件的无监督预训练在MNIST、CMATERDDB和ISI数据集上分别达到了99.56%、99.83%和99.35%的准确率,其中CMATERDB和ISI数据集的准确率是目前为止最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信