Crisis management knowledge from social media

K. Kreiner, A. Immonen, H. Suominen
{"title":"Crisis management knowledge from social media","authors":"K. Kreiner, A. Immonen, H. Suominen","doi":"10.1145/2537734.2537740","DOIUrl":null,"url":null,"abstract":"More and more crisis managers, crisis communicators and laypeople use Twitter and other social media to provide or seek crisis information. In this paper, we focus on retrospective conversion of human-safety related data to crisis management knowledge. First, we study how Twitter data can be classified into the seven categories of the United Nations Development Program Security Model (i.e., Food, Health, Politics, Economic, Personal, Community, and Environment). We conclude that these topic categories are applicable, and supplementing them with classification of individual authors into more generic sources of data (i.e., Official authorities, Media, and Laypeople) allows curating data and assessing crisis maturity. Second, we introduce automated classifiers, based on supervised learning and decision rules, for both tasks and evaluate their correctness. This evaluation uses two datasets collected during the crises of Queensland floods and NZ Earthquake in 2011. The topic classifier performs well in the major categories (i.e., 120--190 training instances) of Economic (F = 0.76) and Community (F = 0.67) while in the minor categories (i.e., 0--60 training instances) the results are more modest (F ≤ 0.41). The source classifier shows excellent results (F ≥ 0.83) in all categories.","PeriodicalId":402985,"journal":{"name":"Australasian Document Computing Symposium","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Document Computing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2537734.2537740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

More and more crisis managers, crisis communicators and laypeople use Twitter and other social media to provide or seek crisis information. In this paper, we focus on retrospective conversion of human-safety related data to crisis management knowledge. First, we study how Twitter data can be classified into the seven categories of the United Nations Development Program Security Model (i.e., Food, Health, Politics, Economic, Personal, Community, and Environment). We conclude that these topic categories are applicable, and supplementing them with classification of individual authors into more generic sources of data (i.e., Official authorities, Media, and Laypeople) allows curating data and assessing crisis maturity. Second, we introduce automated classifiers, based on supervised learning and decision rules, for both tasks and evaluate their correctness. This evaluation uses two datasets collected during the crises of Queensland floods and NZ Earthquake in 2011. The topic classifier performs well in the major categories (i.e., 120--190 training instances) of Economic (F = 0.76) and Community (F = 0.67) while in the minor categories (i.e., 0--60 training instances) the results are more modest (F ≤ 0.41). The source classifier shows excellent results (F ≥ 0.83) in all categories.
来自社交媒体的危机管理知识
越来越多的危机管理者、危机传播者和外行人使用Twitter等社交媒体提供或寻求危机信息。在本文中,我们着重于回顾性地将人类安全相关数据转换为危机管理知识。首先,我们研究如何将Twitter数据划分为联合国开发计划署安全模型的七个类别(即食品,健康,政治,经济,个人,社区和环境)。我们得出结论,这些主题类别是适用的,并通过将个人作者分类为更通用的数据来源(即官方机构、媒体和非专业人士)来补充它们,从而可以管理数据并评估危机成熟度。其次,我们为这两个任务引入基于监督学习和决策规则的自动分类器,并评估它们的正确性。本评估使用了2011年昆士兰州洪水和新西兰地震危机期间收集的两个数据集。主题分类器在经济(F = 0.76)和社区(F = 0.67)的主要类别(即120- 190个训练实例)中表现良好,而在次要类别(即0- 60个训练实例)中结果更为温和(F≤0.41)。源分类器在所有类别中均表现出优异的结果(F≥0.83)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信