Localization System for Vehicle Navigation Based on GNSS/IMU Using Time-Series Optimization with Road Gradient Constrain

Aoki Takanose, Kaito Kondo, Yuta Hoda, J. Meguro, K. Takeda
{"title":"Localization System for Vehicle Navigation Based on GNSS/IMU Using Time-Series Optimization with Road Gradient Constrain","authors":"Aoki Takanose, Kaito Kondo, Yuta Hoda, J. Meguro, K. Takeda","doi":"10.20965/jrm.2023.p0387","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a GNSS/IMU localization system for mobile robots when wheel speed sensors cannot be attached. Highly accurate location information is required for autonomous navigation of mobile robots. A typical method of acquiring location information is to use a Kalman filter for position estimation. The Kalman filter is a maximum-likelihood estimation method that assumes normally distributed noise. However, non-normally distributed GNSS multipath noise that frequently occurs in urban environments causes the Kalman filter to break down, and degrades the estimation performance. Other GNSS/IMU localization methods capable of lane-level estimation in urban environments use wheel speed sensors, which are unsuitable for the present situation. In this study, we aim to improve the performance of lane-level localization by adding a vehicle speed estimation function to adapt the method to those requiring wheel speed sensors. The proposed method optimizes time-series data to accurately compensate for accelerometer bias errors and reduce GNSS multipath noise. The evaluation confirmed the effectiveness of the proposed method, with improved velocity and position estimation performance compared with the Kalman filter method.","PeriodicalId":178614,"journal":{"name":"J. Robotics Mechatronics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Robotics Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jrm.2023.p0387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a GNSS/IMU localization system for mobile robots when wheel speed sensors cannot be attached. Highly accurate location information is required for autonomous navigation of mobile robots. A typical method of acquiring location information is to use a Kalman filter for position estimation. The Kalman filter is a maximum-likelihood estimation method that assumes normally distributed noise. However, non-normally distributed GNSS multipath noise that frequently occurs in urban environments causes the Kalman filter to break down, and degrades the estimation performance. Other GNSS/IMU localization methods capable of lane-level estimation in urban environments use wheel speed sensors, which are unsuitable for the present situation. In this study, we aim to improve the performance of lane-level localization by adding a vehicle speed estimation function to adapt the method to those requiring wheel speed sensors. The proposed method optimizes time-series data to accurately compensate for accelerometer bias errors and reduce GNSS multipath noise. The evaluation confirmed the effectiveness of the proposed method, with improved velocity and position estimation performance compared with the Kalman filter method.
基于GNSS/IMU的道路梯度约束时间序列优化车辆导航定位系统
在本文中,我们提出了一种针对移动机器人无法附加轮速传感器的GNSS/IMU定位系统。移动机器人的自主导航需要高精度的位置信息。获取位置信息的一种典型方法是使用卡尔曼滤波进行位置估计。卡尔曼滤波是一种假设噪声正态分布的最大似然估计方法。然而,城市环境中频繁出现的非正态分布GNSS多径噪声会导致卡尔曼滤波失效,降低估计性能。其他能够在城市环境中估计车道水平的GNSS/IMU定位方法使用轮速传感器,不适合目前的情况。在本研究中,我们的目标是通过增加车辆速度估计函数来提高车道级定位的性能,以使该方法适应需要轮速传感器的情况。该方法对时间序列数据进行优化,精确补偿加速度计的偏置误差,降低GNSS多径噪声。实验验证了该方法的有效性,与卡尔曼滤波方法相比,该方法的速度和位置估计性能都有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信