Craig Miles, Arun Lakhotia, Charles LeDoux, Aaron Newsom, Vivek Notani
{"title":"VirusBattle: State-of-the-art malware analysis for better cyber threat intelligence","authors":"Craig Miles, Arun Lakhotia, Charles LeDoux, Aaron Newsom, Vivek Notani","doi":"10.1109/ISRCS.2014.6900103","DOIUrl":null,"url":null,"abstract":"Discovered interrelationships among instances of malware can be used to infer connections among seemingly unconnected objects, including actors, machines, and the malware itself. However, such malware interrelationships are currently underutilized in the cyber threat intelligence arena. To fill that gap, we are developing VirusBattle, a system employing state-of-the-art malware analyses to automatically discover interrelationships among instances of malware. VirusBattle analyses mine malware interrelationships over many types of malware artifacts, including the binary, code, code semantics, dynamic behaviors, malware metadata, distribution sites and e-mails. The result is a malware interrelationships graph which can be explored automatically or interactively to infer previously unknown connections.","PeriodicalId":205922,"journal":{"name":"2014 7th International Symposium on Resilient Control Systems (ISRCS)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 7th International Symposium on Resilient Control Systems (ISRCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISRCS.2014.6900103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Discovered interrelationships among instances of malware can be used to infer connections among seemingly unconnected objects, including actors, machines, and the malware itself. However, such malware interrelationships are currently underutilized in the cyber threat intelligence arena. To fill that gap, we are developing VirusBattle, a system employing state-of-the-art malware analyses to automatically discover interrelationships among instances of malware. VirusBattle analyses mine malware interrelationships over many types of malware artifacts, including the binary, code, code semantics, dynamic behaviors, malware metadata, distribution sites and e-mails. The result is a malware interrelationships graph which can be explored automatically or interactively to infer previously unknown connections.