Damage detection from aerial images via convolutional neural networks

A. Fujita, Ken Sakurada, T. Imaizumi, R. Ito, S. Hikosaka, R. Nakamura
{"title":"Damage detection from aerial images via convolutional neural networks","authors":"A. Fujita, Ken Sakurada, T. Imaizumi, R. Ito, S. Hikosaka, R. Nakamura","doi":"10.23919/MVA.2017.7986759","DOIUrl":null,"url":null,"abstract":"This paper explores the effective use of Convolutional Neural Networks (CNNs) in the context of washed-away building detection from pre- and post-tsunami aerial images. To this end, we compile a dedicated, labeled aerial image dataset to construct models that classify whether a building is washed-away. Each datum in the set is a pair of pre- and post-tsunami image patches and encompasses a target building at the center of the patch. Using this dataset, we comprehensively evaluate CNNs from a practical-application viewpoint, e.g., input scenarios (pre-tsunami images are not always available), input scales (building size varies) and different configurations for CNNs. The experimental results show that our CNN-based washed-away detection system achieves 94–96% classification accuracy across all conditions, indicating the promising applicability of CNNs for washed-away building detection.","PeriodicalId":193716,"journal":{"name":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","volume":"269 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MVA.2017.7986759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

Abstract

This paper explores the effective use of Convolutional Neural Networks (CNNs) in the context of washed-away building detection from pre- and post-tsunami aerial images. To this end, we compile a dedicated, labeled aerial image dataset to construct models that classify whether a building is washed-away. Each datum in the set is a pair of pre- and post-tsunami image patches and encompasses a target building at the center of the patch. Using this dataset, we comprehensively evaluate CNNs from a practical-application viewpoint, e.g., input scenarios (pre-tsunami images are not always available), input scales (building size varies) and different configurations for CNNs. The experimental results show that our CNN-based washed-away detection system achieves 94–96% classification accuracy across all conditions, indicating the promising applicability of CNNs for washed-away building detection.
基于卷积神经网络的航空图像损伤检测
本文探讨了卷积神经网络(cnn)在海啸前和海啸后航空图像中被冲走建筑物检测的有效使用。为此,我们编译了一个专用的,标记的航空图像数据集来构建模型来分类建筑物是否被冲走。集合中的每个基准面都是一对海啸前和海啸后的图像补丁,并包含在补丁中心的目标建筑物。使用该数据集,我们从实际应用的角度全面评估cnn,例如,输入场景(海啸前的图像并不总是可用的),输入规模(建筑大小不同)和cnn的不同配置。实验结果表明,基于cnn的冲蚀检测系统在所有条件下的分类准确率均达到94-96%,表明cnn在冲蚀建筑检测中具有良好的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信