Biomedical Spectral Classification Using Stochastic Feature Selection and Fuzzy Aggregation

N. Pizzi, C. Wiebe, W. Pedrycz
{"title":"Biomedical Spectral Classification Using Stochastic Feature Selection and Fuzzy Aggregation","authors":"N. Pizzi, C. Wiebe, W. Pedrycz","doi":"10.1109/NAFIPS.2007.383865","DOIUrl":null,"url":null,"abstract":"Classifying magnetic resonance spectra is often difficult due to the curse of dimensionality; a high-dimensional feature space couple with a small sample size. We present an aggregation strategy that combines predicted disease states from multiple classifiers with the anticipated outcome that the aggregated predictions are superior to any individual classifier prediction. Multiple classifiers are presented with different, randomly selected, subsets of spectral features. The fuzzy integration results are compared against the best individual classifier operating on a spectral feature subset.","PeriodicalId":292853,"journal":{"name":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2007 - 2007 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2007.383865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Classifying magnetic resonance spectra is often difficult due to the curse of dimensionality; a high-dimensional feature space couple with a small sample size. We present an aggregation strategy that combines predicted disease states from multiple classifiers with the anticipated outcome that the aggregated predictions are superior to any individual classifier prediction. Multiple classifiers are presented with different, randomly selected, subsets of spectral features. The fuzzy integration results are compared against the best individual classifier operating on a spectral feature subset.
基于随机特征选择和模糊聚合的生物医学光谱分类
由于维度的诅咒,对磁共振波谱进行分类往往很困难;具有小样本量的高维特征空间。我们提出了一种聚合策略,将来自多个分类器的预测疾病状态与预期结果相结合,聚合预测优于任何单个分类器预测。对不同的、随机选择的光谱特征子集提出了多个分类器。将模糊集成结果与在光谱特征子集上运行的最佳个体分类器进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信