Nonnegative Block-Term Decomposition with the β-Divergence: Joint Data Fusion and Blind Spectral Unmixing

Clémence Prévost, Valentin Leplat
{"title":"Nonnegative Block-Term Decomposition with the β-Divergence: Joint Data Fusion and Blind Spectral Unmixing","authors":"Clémence Prévost, Valentin Leplat","doi":"10.1109/ICASSP49357.2023.10096100","DOIUrl":null,"url":null,"abstract":"We present a new method for solving simultaneously hyperspectral super-resolution and spectral unmixing of the unknown super-resolution image. Our method relies on three key elements: (1) the nonnegative decomposition in rank-(Lr, Lr, 1) block-terms, (2) joint tensor factorization with multiplicative updates, and (3) the formulation of a family of optimization problems with β-divergences objective functions. We come up with a family of simple, robust and efficient algorithms, adaptable to various noise statistics. Experiments show that our approach competes favorably with state-of-the-art methods for solving both problems at hand for various noise statistics.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10096100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new method for solving simultaneously hyperspectral super-resolution and spectral unmixing of the unknown super-resolution image. Our method relies on three key elements: (1) the nonnegative decomposition in rank-(Lr, Lr, 1) block-terms, (2) joint tensor factorization with multiplicative updates, and (3) the formulation of a family of optimization problems with β-divergences objective functions. We come up with a family of simple, robust and efficient algorithms, adaptable to various noise statistics. Experiments show that our approach competes favorably with state-of-the-art methods for solving both problems at hand for various noise statistics.
基于β-散度的非负块项分解:联合数据融合与盲光谱解混
提出了一种同时求解未知超分辨图像的高光谱超分辨和光谱解混的新方法。我们的方法依赖于三个关键要素:(1)秩-(Lr, Lr, 1)块项的非负分解,(2)带有乘法更新的联合张量分解,以及(3)具有β-散度目标函数的一组优化问题的公式。我们提出了一系列简单,稳健和高效的算法,适用于各种噪声统计。实验表明,我们的方法可以与最先进的方法竞争,以解决手头的各种噪声统计问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信