{"title":"Nonnegative Block-Term Decomposition with the β-Divergence: Joint Data Fusion and Blind Spectral Unmixing","authors":"Clémence Prévost, Valentin Leplat","doi":"10.1109/ICASSP49357.2023.10096100","DOIUrl":null,"url":null,"abstract":"We present a new method for solving simultaneously hyperspectral super-resolution and spectral unmixing of the unknown super-resolution image. Our method relies on three key elements: (1) the nonnegative decomposition in rank-(Lr, Lr, 1) block-terms, (2) joint tensor factorization with multiplicative updates, and (3) the formulation of a family of optimization problems with β-divergences objective functions. We come up with a family of simple, robust and efficient algorithms, adaptable to various noise statistics. Experiments show that our approach competes favorably with state-of-the-art methods for solving both problems at hand for various noise statistics.","PeriodicalId":113072,"journal":{"name":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP49357.2023.10096100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a new method for solving simultaneously hyperspectral super-resolution and spectral unmixing of the unknown super-resolution image. Our method relies on three key elements: (1) the nonnegative decomposition in rank-(Lr, Lr, 1) block-terms, (2) joint tensor factorization with multiplicative updates, and (3) the formulation of a family of optimization problems with β-divergences objective functions. We come up with a family of simple, robust and efficient algorithms, adaptable to various noise statistics. Experiments show that our approach competes favorably with state-of-the-art methods for solving both problems at hand for various noise statistics.