Ordering Levels in Human Computation Games using Playtraces and Level Structure

Anurag Sarkar, Seth Cooper
{"title":"Ordering Levels in Human Computation Games using Playtraces and Level Structure","authors":"Anurag Sarkar, Seth Cooper","doi":"10.1109/CoG51982.2022.9893702","DOIUrl":null,"url":null,"abstract":"Prior work using skill chains for matchmaking-based dynamic difficulty adjustment in human computation games required skill chains to be manually defined for a game, and each level to be manually annotated with the individual skills needed to complete that level. In this work, we present two approaches for defining level orderings for DDA in the platformer HCG Iowa James without using such manually-defined skill chains and annotations. The first involves sequences of action-context pairs found in gameplay traces. The second consists of applying K-means clustering on segments of levels. Our results show that both new approaches outperform baseline random level ordering and perform similarly to the skill chain approach.","PeriodicalId":394281,"journal":{"name":"2022 IEEE Conference on Games (CoG)","volume":"699 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Games (CoG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoG51982.2022.9893702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Prior work using skill chains for matchmaking-based dynamic difficulty adjustment in human computation games required skill chains to be manually defined for a game, and each level to be manually annotated with the individual skills needed to complete that level. In this work, we present two approaches for defining level orderings for DDA in the platformer HCG Iowa James without using such manually-defined skill chains and annotations. The first involves sequences of action-context pairs found in gameplay traces. The second consists of applying K-means clustering on segments of levels. Our results show that both new approaches outperform baseline random level ordering and perform similarly to the skill chain approach.
在人类计算游戏中使用Playtraces和关卡结构来排序关卡
之前在人类计算游戏中使用技能链进行基于配对的动态难度调整的工作需要为游戏手动定义技能链,并且每个关卡都需要手动标注完成该关卡所需的个人技能。在这项工作中,我们提出了两种方法来定义平台游戏《HCG Iowa James》中DDA的关卡顺序,而无需使用这种手动定义的技能链和注释。第一个是在玩法轨迹中发现的动作-情境配对序列。第二种方法是在水平段上应用K-means聚类。我们的结果表明,这两种新方法都优于基线随机水平排序,并且与技能链方法相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信