The Design of an Embedded Multi-Sensor Data Fusion System for Unmanned Surface Vehicle Navigation Based on Real Time Operating System

Wenwen Liu, Yuanchang Liu, R. Song, R. Bucknall
{"title":"The Design of an Embedded Multi-Sensor Data Fusion System for Unmanned Surface Vehicle Navigation Based on Real Time Operating System","authors":"Wenwen Liu, Yuanchang Liu, R. Song, R. Bucknall","doi":"10.1109/OCEANSKOBE.2018.8559352","DOIUrl":null,"url":null,"abstract":"This paper describes the design and implementation of a practical multi-sensor data fusion system for unmanned surface vehicle (USV) navigation. The system employs an embedded Linux board as the main on-board control module to extract and preprocess raw measurements from various navigational sensors using the real time operating system (RTOS). An unscented Kalman Filter (UKF) based data fusion algorithm has been developed to fuse the obtained and preprocessed sensor measurements and provide more reliable and accurate estimations of USV's navigational data in real time. The results demonstrate the effectiveness of the data fusion algorithm in reducing unpredicted errors of a standalone sensor.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8559352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes the design and implementation of a practical multi-sensor data fusion system for unmanned surface vehicle (USV) navigation. The system employs an embedded Linux board as the main on-board control module to extract and preprocess raw measurements from various navigational sensors using the real time operating system (RTOS). An unscented Kalman Filter (UKF) based data fusion algorithm has been developed to fuse the obtained and preprocessed sensor measurements and provide more reliable and accurate estimations of USV's navigational data in real time. The results demonstrate the effectiveness of the data fusion algorithm in reducing unpredicted errors of a standalone sensor.
基于实时操作系统的嵌入式无人水面车辆导航多传感器数据融合系统设计
介绍了一种实用的无人水面航行器多传感器数据融合系统的设计与实现。该系统采用嵌入式Linux板作为主车载控制模块,利用实时操作系统(RTOS)对各种导航传感器的原始测量数据进行提取和预处理。提出了一种基于无气味卡尔曼滤波(unscented Kalman Filter, UKF)的数据融合算法,将获取的传感器测量数据与预处理后的传感器测量数据进行融合,提供更可靠、更准确的USV导航数据实时估计。实验结果表明,数据融合算法在降低独立传感器的不可预测误差方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信