Real-Time Instrument Scene Detection in Screening GI Endoscopic Procedures

Chuanhai Zhang, Wallapak Tavanapong, J. Wong, P. C. Groen, Jung-Hwan Oh
{"title":"Real-Time Instrument Scene Detection in Screening GI Endoscopic Procedures","authors":"Chuanhai Zhang, Wallapak Tavanapong, J. Wong, P. C. Groen, Jung-Hwan Oh","doi":"10.1109/CBMS.2017.42","DOIUrl":null,"url":null,"abstract":"We describe a new and effective real-time solution for detecting video segments showing an instrument used during diagnostic or therapeutic operations in endoscopic procedures. In addition, we present a new method to collect a large training dataset: similarity-based data augmentation. This method automates most of the creation of a large training dataset and prevents extensive manual effort to collect and annotate training data by domain experts. Convolutional Neural Network (CNN) analysis using the training data collected with similarity-based data augmentation yields an average F1 score within 1% of that of the CNN analysis using a large manually collected training dataset.","PeriodicalId":141105,"journal":{"name":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2017.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We describe a new and effective real-time solution for detecting video segments showing an instrument used during diagnostic or therapeutic operations in endoscopic procedures. In addition, we present a new method to collect a large training dataset: similarity-based data augmentation. This method automates most of the creation of a large training dataset and prevents extensive manual effort to collect and annotate training data by domain experts. Convolutional Neural Network (CNN) analysis using the training data collected with similarity-based data augmentation yields an average F1 score within 1% of that of the CNN analysis using a large manually collected training dataset.
实时仪器场景检测筛查胃肠道内镜手术
我们描述了一种新的和有效的实时解决方案,用于检测视频片段,显示在内镜程序中诊断或治疗操作中使用的仪器。此外,我们提出了一种收集大型训练数据集的新方法:基于相似度的数据增强。该方法自动化了大部分大型训练数据集的创建,并避免了领域专家收集和注释训练数据的大量手工工作。使用基于相似性的数据增强收集的训练数据进行卷积神经网络(CNN)分析,其平均F1分数与使用人工收集的大型训练数据集进行CNN分析的F1分数相差不到1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信