{"title":"Prediction of traffic accident duration based on N-BEATS","authors":"Y. He, Senchang Zhang, Peiyao Zhong, Zhenliang Li","doi":"10.1117/12.2679093","DOIUrl":null,"url":null,"abstract":"The prediction of traffic accident duration is the basis of highway emergency management. Timely and accurate prediction of traffic accident duration can provide a reliable basis for road guidance and rescue organization. This paper discusses the traffic accident duration prediction method of N-BEATS model in detail. Through the change of sliding window size and the continuous adjustment of the number of iterations, the appropriate parameters are found to produce a good prediction effect. The dataset used in this paper is US Accidents, a nation-wide dataset of traffic accidents covering 49 states in the US. The experimental results show that compared with the classical time series prediction models such as Bi-LSTM, SVM, RNN-GRU and AttnAR, prediction of traffic accident duration model based on N-BEATS proposed in this paper is optimal in the three evaluation indicators of RMSE, MAE and SD, which shows that the model has the highest prediction accuracy and good performance.","PeriodicalId":342847,"journal":{"name":"International Conference on Algorithms, Microchips and Network Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithms, Microchips and Network Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2679093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The prediction of traffic accident duration is the basis of highway emergency management. Timely and accurate prediction of traffic accident duration can provide a reliable basis for road guidance and rescue organization. This paper discusses the traffic accident duration prediction method of N-BEATS model in detail. Through the change of sliding window size and the continuous adjustment of the number of iterations, the appropriate parameters are found to produce a good prediction effect. The dataset used in this paper is US Accidents, a nation-wide dataset of traffic accidents covering 49 states in the US. The experimental results show that compared with the classical time series prediction models such as Bi-LSTM, SVM, RNN-GRU and AttnAR, prediction of traffic accident duration model based on N-BEATS proposed in this paper is optimal in the three evaluation indicators of RMSE, MAE and SD, which shows that the model has the highest prediction accuracy and good performance.