{"title":"Optical Propagation in Magneto-Optical Materials","authors":"L. Alcantara","doi":"10.5772/INTECHOPEN.81963","DOIUrl":null,"url":null,"abstract":"Magneto-optical materials present anisotropy in the electrical permittivity controlled by a magnetic field, which affects the propagation characteristics of light and stands out in the design of nonreciprocal devices, such as optical isolators and circulators. Based on Maxwell ’ s equations, this chapter focuses on the wave propagation in magneto-optical media. The following cases are covered: The propagation of a plane wave in an unbounded magneto-optical medium, where the phenomenon of Faraday rotation is discussed, and the guided propagation in planar magnetooptical waveguides with three and five layers, highlighting the phenomenon of nonreciprocal phase shift and its potential use on the design of nonreciprocal optical devices.","PeriodicalId":247660,"journal":{"name":"Electromagnetic Materials and Devices","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.81963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Magneto-optical materials present anisotropy in the electrical permittivity controlled by a magnetic field, which affects the propagation characteristics of light and stands out in the design of nonreciprocal devices, such as optical isolators and circulators. Based on Maxwell ’ s equations, this chapter focuses on the wave propagation in magneto-optical media. The following cases are covered: The propagation of a plane wave in an unbounded magneto-optical medium, where the phenomenon of Faraday rotation is discussed, and the guided propagation in planar magnetooptical waveguides with three and five layers, highlighting the phenomenon of nonreciprocal phase shift and its potential use on the design of nonreciprocal optical devices.