How many classifiers do I need?

B. Schiele
{"title":"How many classifiers do I need?","authors":"B. Schiele","doi":"10.1109/ICPR.2002.1048266","DOIUrl":null,"url":null,"abstract":"Combining multiple classifiers promises to increase performance and robustness of a classification task. Currently, the understanding which combination scheme should be used and the ability to quantify the expected benefit is inadequate. This paper attempts to quantify the performance and robustness gain for different combination schemes and for two classifier types. The results indicate that the combination of a small number of classifiers may already result in a substantial performance gain. Also, the increase in robustness can be substantial by combining an adequate number of classifiers.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Combining multiple classifiers promises to increase performance and robustness of a classification task. Currently, the understanding which combination scheme should be used and the ability to quantify the expected benefit is inadequate. This paper attempts to quantify the performance and robustness gain for different combination schemes and for two classifier types. The results indicate that the combination of a small number of classifiers may already result in a substantial performance gain. Also, the increase in robustness can be substantial by combining an adequate number of classifiers.
我需要多少个分类器?
组合多个分类器有望提高分类任务的性能和鲁棒性。目前,对应采用何种组合方案的认识和量化预期效益的能力不足。本文试图量化不同组合方案和两种分类器类型的性能和鲁棒性增益。结果表明,少量分类器的组合可能已经产生了实质性的性能增益。此外,通过组合足够数量的分类器,鲁棒性可以得到实质性的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信