Cost-Time Performance of Scaling Applications on the Cloud

Sunimal Rathnayake, Lavanya Ramapantulu, Y. M. Teo
{"title":"Cost-Time Performance of Scaling Applications on the Cloud","authors":"Sunimal Rathnayake, Lavanya Ramapantulu, Y. M. Teo","doi":"10.1109/CloudCom2018.2018.00021","DOIUrl":null,"url":null,"abstract":"Recent advancements in big data processing and machine learning, among others, increase the resource demand for running applications with larger problem sizes. Elastic cloud computing resources with pay-per-use pricing offers new opportunities where large application execution is constrained only by the cost budget. Given a cost budget and a time deadline, this paper introduces a measurement-driven analytical modeling approach to determine the largest Pareto-optimal problem size and its corresponding cloud configuration for execution. We evaluate our approach with a set of representative applications that exhibit a range of resource demand growth patterns on Amazon AWS cloud. We show the existence of cost-time-size Pareto-frontier with multiple sweet spots meeting user constraints. To characterize the cost-performance of cloud resources, we use Performance Cost Ratio (PCR) metric. We extend Gustafson's fixed-time scaling in the context of cloud, and, investigate fixed-cost-time scaling of applications and show that using resources with higher PCR yields better cost-time performance. We discuss a number of useful insights on the trade-off between the execution time and the largest Pareto-optimal problem size, and, show that time deadline could be tightened for a proportionately much smaller reduction of problem size.","PeriodicalId":365939,"journal":{"name":"2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom2018.2018.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recent advancements in big data processing and machine learning, among others, increase the resource demand for running applications with larger problem sizes. Elastic cloud computing resources with pay-per-use pricing offers new opportunities where large application execution is constrained only by the cost budget. Given a cost budget and a time deadline, this paper introduces a measurement-driven analytical modeling approach to determine the largest Pareto-optimal problem size and its corresponding cloud configuration for execution. We evaluate our approach with a set of representative applications that exhibit a range of resource demand growth patterns on Amazon AWS cloud. We show the existence of cost-time-size Pareto-frontier with multiple sweet spots meeting user constraints. To characterize the cost-performance of cloud resources, we use Performance Cost Ratio (PCR) metric. We extend Gustafson's fixed-time scaling in the context of cloud, and, investigate fixed-cost-time scaling of applications and show that using resources with higher PCR yields better cost-time performance. We discuss a number of useful insights on the trade-off between the execution time and the largest Pareto-optimal problem size, and, show that time deadline could be tightened for a proportionately much smaller reduction of problem size.
云上扩展应用程序的成本-时间性能
在大数据处理和机器学习等方面的最新进展,增加了运行具有更大问题规模的应用程序的资源需求。在大型应用程序执行只受成本预算限制的情况下,按使用付费的弹性云计算资源提供了新的机会。在给定成本预算和时间期限的情况下,本文引入了一种测量驱动的分析建模方法,以确定最大的帕累托最优问题规模及其相应的执行云配置。我们用一组具有代表性的应用程序来评估我们的方法,这些应用程序在Amazon AWS云上展示了一系列资源需求增长模式。我们证明了具有满足用户约束的多个甜蜜点的成本-时间大小pareto边界的存在性。为了描述云资源的成本性能,我们使用性能成本比(PCR)指标。我们在云环境中扩展了Gustafson的固定时间缩放,并研究了应用程序的固定成本时间缩放,并表明使用具有更高PCR的资源可以产生更好的成本时间性能。我们讨论了关于执行时间和最大pareto最优问题大小之间权衡的一些有用的见解,并且显示了可以按比例收紧时间截止日期以减少更小的问题大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信