WNN-based NGN traffic prediction

Qigang Zhao, X. Fang, Qunzhan Li, Zhengyou He
{"title":"WNN-based NGN traffic prediction","authors":"Qigang Zhao, X. Fang, Qunzhan Li, Zhengyou He","doi":"10.1109/ISADS.2005.1452059","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a methodology to predict IP traffic in IP-based next generation network (NGN). By using Netflow traffic collecting technology, we've collected some traffic data for the analysis from an NGN operator. To build wavelet basis neural network (NN), we replace Sigmoid function with the wavelet in NN, and use wavelet multiresolution analysis method to decompose the traffic signal and then employ the decomposed component sequences to train the NN. By using the methods, we build a NGN traffic prediction model by which to predict one day's traffic. The experimental results show that the traffic prediction method of wavelet NN (WNN) is more accurate than that without using wavelet in the NGN traffic forecasting.","PeriodicalId":120577,"journal":{"name":"Proceedings Autonomous Decentralized Systems, 2005. ISADS 2005.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Autonomous Decentralized Systems, 2005. ISADS 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISADS.2005.1452059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this paper we introduce a methodology to predict IP traffic in IP-based next generation network (NGN). By using Netflow traffic collecting technology, we've collected some traffic data for the analysis from an NGN operator. To build wavelet basis neural network (NN), we replace Sigmoid function with the wavelet in NN, and use wavelet multiresolution analysis method to decompose the traffic signal and then employ the decomposed component sequences to train the NN. By using the methods, we build a NGN traffic prediction model by which to predict one day's traffic. The experimental results show that the traffic prediction method of wavelet NN (WNN) is more accurate than that without using wavelet in the NGN traffic forecasting.
基于无线网络的下一代网络流量预测
本文介绍了一种基于IP的下一代网络(NGN)中IP流量预测的方法。通过使用Netflow流量采集技术,我们从一家NGN运营商那里收集了一些流量数据进行分析。为了构建小波基神经网络(NN),我们将神经网络中的小波替换为Sigmoid函数,并利用小波多分辨率分析方法对交通信号进行分解,然后利用分解后的分量序列对神经网络进行训练。利用这些方法,我们建立了NGN流量预测模型,用于预测某一天的流量。实验结果表明,小波神经网络(WNN)的流量预测方法比不使用小波神经网络的流量预测方法更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信