Two-class classifier cellular automata

Jetsada Ponkaew, S. Wongthanavasu, C. Lursinsap
{"title":"Two-class classifier cellular automata","authors":"Jetsada Ponkaew, S. Wongthanavasu, C. Lursinsap","doi":"10.1109/ISIEA.2011.6108730","DOIUrl":null,"url":null,"abstract":"This paper presents a special class of Cellular Automata (CA) for pattern classification called Two-Class Classifier Generalized Multiple Attractor Cellular Automata (2C2-GMACA). The design is based on two-class classifier architecture using an evolving CA technique to identify a solution. The Generalized Multiple Attractor Cellular Automata (GMACA) is another class of CA for pattern classification. It is better than the Hopfield Net in literature. In addition, it is compared with the 2C2-GMACA in performance evaluation. According to the Error Correcting Codes experiment, the 2C2-GMACA is more powerful than the GMACA in term of recognition rates and evaluation time to get a rule vector which is reduced to linear complexity.","PeriodicalId":110449,"journal":{"name":"2011 IEEE Symposium on Industrial Electronics and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Industrial Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIEA.2011.6108730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a special class of Cellular Automata (CA) for pattern classification called Two-Class Classifier Generalized Multiple Attractor Cellular Automata (2C2-GMACA). The design is based on two-class classifier architecture using an evolving CA technique to identify a solution. The Generalized Multiple Attractor Cellular Automata (GMACA) is another class of CA for pattern classification. It is better than the Hopfield Net in literature. In addition, it is compared with the 2C2-GMACA in performance evaluation. According to the Error Correcting Codes experiment, the 2C2-GMACA is more powerful than the GMACA in term of recognition rates and evaluation time to get a rule vector which is reduced to linear complexity.
二类分类器元胞自动机
本文提出了一类特殊的用于模式分类的元胞自动机——二类分类器广义多吸引子元胞自动机(2C2-GMACA)。该设计基于两类分类器架构,使用不断发展的CA技术来识别解决方案。广义多吸引元胞自动机(GMACA)是另一类用于模式分类的CA。在文学上它比Hopfield网要好。并与2C2-GMACA进行了性能评价比较。在纠错码实验中,2C2-GMACA在识别率和评估时间上都比GMACA更强大,得到的规则向量降低到线性复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信