Cluster validation for subspace clustering on high dimensional data

Lifei Chen, Q. Jiang, Shengrui Wang
{"title":"Cluster validation for subspace clustering on high dimensional data","authors":"Lifei Chen, Q. Jiang, Shengrui Wang","doi":"10.1109/APCCAS.2008.4746001","DOIUrl":null,"url":null,"abstract":"As an important issue in cluster analysis, cluster validation is the process of evaluating performance of clustering algorithms under varying input conditions. Many existing methods address clustering results of low-dimensional data. This paper presents new solution to the problem of cluster validation for subspace clustering on high dimensional data. We first propose two new measurements for the intra-cluster compactness and inter-cluster separation of subspace clusters. Based on these measurements and the conventional indices, three new cluster validity indices that can be applied to subspace clustering are presented. Combining with a soft subspace clustering algorithm, the new indices are used to determine the number of clusters in high dimensional data. The experimental results on synthetic and real world datasets have shown their effectiveness.","PeriodicalId":344917,"journal":{"name":"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2008.4746001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

As an important issue in cluster analysis, cluster validation is the process of evaluating performance of clustering algorithms under varying input conditions. Many existing methods address clustering results of low-dimensional data. This paper presents new solution to the problem of cluster validation for subspace clustering on high dimensional data. We first propose two new measurements for the intra-cluster compactness and inter-cluster separation of subspace clusters. Based on these measurements and the conventional indices, three new cluster validity indices that can be applied to subspace clustering are presented. Combining with a soft subspace clustering algorithm, the new indices are used to determine the number of clusters in high dimensional data. The experimental results on synthetic and real world datasets have shown their effectiveness.
高维数据子空间聚类的聚类验证
聚类验证是在不同输入条件下评价聚类算法性能的过程,是聚类分析中的一个重要问题。现有的许多方法都是针对低维数据的聚类结果。针对高维数据的子空间聚类问题,提出了一种新的聚类验证方法。本文首先提出了子空间簇的簇内紧度和簇间分离度的两种新的度量方法。在此基础上,提出了三种适用于子空间聚类的聚类有效性指标。结合软子空间聚类算法,利用新指标确定高维数据中的聚类数量。在合成数据集和实际数据集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信