Multimodal concept detection on multimedia data- RTUK SKAAS KavTan system

Mashar Tekin, A. Saracoglu, E. Esen, M. Soysal, K. B. Logoglu, H. Sevimli, Tugrul K. Ates, A. Sevinç, Banu Oskay Acar, Ünal Zubari, Ezgi C. Ozan, Ilkay Atil, Mehmet Ali Arabaci, Seda Tankiz, Savas Özkan, Talha Karadeniz, D. Önür, Sezin Selçuk, T. Çiloglu, Aydin Alatan
{"title":"Multimodal concept detection on multimedia data- RTUK SKAAS KavTan system","authors":"Mashar Tekin, A. Saracoglu, E. Esen, M. Soysal, K. B. Logoglu, H. Sevimli, Tugrul K. Ates, A. Sevinç, Banu Oskay Acar, Ünal Zubari, Ezgi C. Ozan, Ilkay Atil, Mehmet Ali Arabaci, Seda Tankiz, Savas Özkan, Talha Karadeniz, D. Önür, Sezin Selçuk, T. Çiloglu, Aydin Alatan","doi":"10.1109/SIU.2012.6204547","DOIUrl":null,"url":null,"abstract":"Concept detection stands as an important problem for many applications like efficient indexing and retrieval in large video archives. In this work, for detection of diverse and distinct concepts a concept detection system (KavTan) that combines a variety of information sources under a single structure is proposed. The proposed system consists of Generalized Audio Concept Detection and Audio Keyword Detection sub-modules that use audio data and Generalized Visual Concept Detection, Video Text Detection, Human Detection, Nudity Detection, Blood Detection, Flag Detection and Skin Detection sub-modules that use visual data. Each concept is detected by using one or more of the mentioned modules. Proposed concept detection system is tested against multiple concepts and system performance is reported. It is observed that for most of the concepts high performance can be achieved with this approach.","PeriodicalId":256154,"journal":{"name":"2012 20th Signal Processing and Communications Applications Conference (SIU)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2012.6204547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Concept detection stands as an important problem for many applications like efficient indexing and retrieval in large video archives. In this work, for detection of diverse and distinct concepts a concept detection system (KavTan) that combines a variety of information sources under a single structure is proposed. The proposed system consists of Generalized Audio Concept Detection and Audio Keyword Detection sub-modules that use audio data and Generalized Visual Concept Detection, Video Text Detection, Human Detection, Nudity Detection, Blood Detection, Flag Detection and Skin Detection sub-modules that use visual data. Each concept is detected by using one or more of the mentioned modules. Proposed concept detection system is tested against multiple concepts and system performance is reported. It is observed that for most of the concepts high performance can be achieved with this approach.
多媒体数据的多模态概念检测- RTUK SKAAS KavTan系统
概念检测是大型视频档案高效索引和检索等应用中的一个重要问题。在这项工作中,为了检测多样化和不同的概念,提出了一种将多种信息源组合在单一结构下的概念检测系统(KavTan)。该系统由使用音频数据的广义音频概念检测和音频关键字检测子模块和使用视觉数据的广义视觉概念检测子模块、视频文本检测子模块、人体检测子模块、裸体检测子模块、血液检测子模块、标志检测子模块和皮肤检测子模块组成。通过使用一个或多个提到的模块来检测每个概念。提出的概念检测系统针对多个概念进行了测试,并报告了系统的性能。可以观察到,对于大多数概念,使用这种方法可以实现高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信