ANN based Flux Estimator for Rotor Resistance Estimation in Vector Controlled IM Drives

A. Venkadesan, S. Himavathi, A. Muthuramalingam, K. Sedhuraman
{"title":"ANN based Flux Estimator for Rotor Resistance Estimation in Vector Controlled IM Drives","authors":"A. Venkadesan, S. Himavathi, A. Muthuramalingam, K. Sedhuraman","doi":"10.1109/ICSCAN.2018.8541240","DOIUrl":null,"url":null,"abstract":"In this paper, artificial neural network (ANN) is proposed to estimate d and q-axis rotor fluxes for rotor resistance estimation. Accurate value of rotor resistance is essential for good performance of vector controlled IM drive. The rotor resistance can be estimated from state synthesis equations. The state synthesis equations (SSE) demand the need of flux components. Conventional Voltage model (VM) used for flux computation fails due to low speed problems. Hence, ANN is proposed for flux computation. The proposed ANN based flux estimator is shown to perform well for various test conditions for rotor resistance estimation and overcome the low problems.","PeriodicalId":378798,"journal":{"name":"2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCAN.2018.8541240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, artificial neural network (ANN) is proposed to estimate d and q-axis rotor fluxes for rotor resistance estimation. Accurate value of rotor resistance is essential for good performance of vector controlled IM drive. The rotor resistance can be estimated from state synthesis equations. The state synthesis equations (SSE) demand the need of flux components. Conventional Voltage model (VM) used for flux computation fails due to low speed problems. Hence, ANN is proposed for flux computation. The proposed ANN based flux estimator is shown to perform well for various test conditions for rotor resistance estimation and overcome the low problems.
基于人工神经网络的矢量控制IM驱动器转子电阻估计方法
本文提出了利用人工神经网络估计d轴和q轴转子磁链的方法来估计转子电阻。准确的转子电阻值是保证矢量控制IM驱动器性能的关键。转子电阻可由状态综合方程估计。状态综合方程(SSE)需要磁通分量。传统的电压模型(VM)在计算磁链时由于速度过慢而失效。因此,提出了人工神经网络进行通量计算。所提出的基于人工神经网络的磁链估计器在各种测试条件下都能很好地估计转子电阻,并克服了低功耗问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信