Manoj Kumar, V. Laxmi, M. Gaur, M. Daneshtalab, S. Ko, Mark Zwolinski
{"title":"Highly adaptive and congestion-aware routing for 3D NoCs","authors":"Manoj Kumar, V. Laxmi, M. Gaur, M. Daneshtalab, S. Ko, Mark Zwolinski","doi":"10.1145/2591513.2591581","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel highly adaptive and congestion aware routing algorithm 3D meshes which is equally applicable to 2D meshes as well. The proposed algorithm allows cyclic dependencies in channel dependency graph (CDG) providing higher degree of adaptiveness. The algorithm uses congestion-aware channel selection strategy that results balanced distribution of traffic flows across the network. A packet follows non-minimal paths only when minimal paths are congested at the neighboring channels. The deadlock avoidance methodology adopted by our algorithm remains cost-efficient as it uses one extra virtual channel along each of Y and Z dimensions to achieve deadlock freedom.","PeriodicalId":272619,"journal":{"name":"ACM Great Lakes Symposium on VLSI","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2591513.2591581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we propose a novel highly adaptive and congestion aware routing algorithm 3D meshes which is equally applicable to 2D meshes as well. The proposed algorithm allows cyclic dependencies in channel dependency graph (CDG) providing higher degree of adaptiveness. The algorithm uses congestion-aware channel selection strategy that results balanced distribution of traffic flows across the network. A packet follows non-minimal paths only when minimal paths are congested at the neighboring channels. The deadlock avoidance methodology adopted by our algorithm remains cost-efficient as it uses one extra virtual channel along each of Y and Z dimensions to achieve deadlock freedom.