Multipath-Based SLAM Exploiting AoA and Amplitude Information

E. Leitinger, Stefan Grebien, K. Witrisal
{"title":"Multipath-Based SLAM Exploiting AoA and Amplitude Information","authors":"E. Leitinger, Stefan Grebien, K. Witrisal","doi":"10.1109/ICCW.2019.8756824","DOIUrl":null,"url":null,"abstract":"In this paper, we present a Bayesian feature-based simultaneous localization and mapping (SLAM) algorithm that exploits multipath components (MPCs) in radio-signals. The proposed belief propagation (BP)-based algorithm enables the estimation of the position, velocity, and orientation of the mobile agent equipped with an antenna array by utilizing the delays and the angle-of-arrivals (AoAs) of the MPCs. The proposed algorithm also exploits the statistics of the complex amplitudes of MPC parameters, i.e. amplitude information (AI), to calculate the detection probabilities of the features. It is therefore suitable for unknown and time-varying detection probabilities. For improved initialization of new virtual anchor (VA) positions, the states of unobserved potential VAs are modeled as a random finite set and propagated in time by means of a \"zero-measurement\" probability hypothesis density filter. We analyze the proposed BP-AI-based SLAM algorithm using synthetic and real measurements enabling robust localization in a challenging environment.","PeriodicalId":426086,"journal":{"name":"2019 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCW.2019.8756824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

In this paper, we present a Bayesian feature-based simultaneous localization and mapping (SLAM) algorithm that exploits multipath components (MPCs) in radio-signals. The proposed belief propagation (BP)-based algorithm enables the estimation of the position, velocity, and orientation of the mobile agent equipped with an antenna array by utilizing the delays and the angle-of-arrivals (AoAs) of the MPCs. The proposed algorithm also exploits the statistics of the complex amplitudes of MPC parameters, i.e. amplitude information (AI), to calculate the detection probabilities of the features. It is therefore suitable for unknown and time-varying detection probabilities. For improved initialization of new virtual anchor (VA) positions, the states of unobserved potential VAs are modeled as a random finite set and propagated in time by means of a "zero-measurement" probability hypothesis density filter. We analyze the proposed BP-AI-based SLAM algorithm using synthetic and real measurements enabling robust localization in a challenging environment.
利用AoA和振幅信息的多路径SLAM
在本文中,我们提出了一种基于贝叶斯特征的同时定位和映射(SLAM)算法,该算法利用无线电信号中的多路径分量(mpc)。提出的基于信念传播(BP)的算法能够利用mpc的延迟和到达角(AoAs)来估计配备天线阵列的移动代理的位置、速度和方向。该算法还利用MPC参数复幅值的统计量,即幅值信息(AI)来计算特征的检测概率。因此,它适用于未知和时变的检测概率。为了改进新虚拟锚点位置的初始化,将未观测到的潜在锚点状态建模为随机有限集,并通过“零测量”概率假设密度滤波器随时间传播。我们分析了提出的基于bp - ai的SLAM算法,使用合成和真实测量,在具有挑战性的环境中实现鲁棒定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信