A hybrid elephant herding optimization and support vector machines for human behavior identification

M. Kilany, A. Hassanien
{"title":"A hybrid elephant herding optimization and support vector machines for human behavior identification","authors":"M. Kilany, A. Hassanien","doi":"10.1109/INTELCIS.2017.8260033","DOIUrl":null,"url":null,"abstract":"Human behavior identification has a great importance in daily life. Security, gaming, and medical diagnosis are vital applications in that field. This paper introduces a hybrid classification approach for human behavior identification employing support vector machines (SVMs) classifier hybrid with Elephant Herding Optimization algorithm (EHO). The Elephant Herding Optimization algorithm used to fine-tune SVM parameters and to select most discriminant features. Validation of the proposed approach will be accomplished using a computer vision-based data set named Vicon. It was acquired from multiple human action detection experiments. Results show superiority for the proposed approach over other techniques on the same data set regarding classification accuracy. EHO-SVM hybrid algorithm reaches 91.21 % and 90.62 % accuracies for two test cases with different action class selections.","PeriodicalId":321315,"journal":{"name":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2017.8260033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Human behavior identification has a great importance in daily life. Security, gaming, and medical diagnosis are vital applications in that field. This paper introduces a hybrid classification approach for human behavior identification employing support vector machines (SVMs) classifier hybrid with Elephant Herding Optimization algorithm (EHO). The Elephant Herding Optimization algorithm used to fine-tune SVM parameters and to select most discriminant features. Validation of the proposed approach will be accomplished using a computer vision-based data set named Vicon. It was acquired from multiple human action detection experiments. Results show superiority for the proposed approach over other techniques on the same data set regarding classification accuracy. EHO-SVM hybrid algorithm reaches 91.21 % and 90.62 % accuracies for two test cases with different action class selections.
混合象群优化与支持向量机的人类行为识别
人类行为识别在日常生活中具有重要意义。安全、游戏和医疗诊断是该领域的重要应用。提出了一种基于支持向量机(svm)分类器和象群优化算法(EHO)的人类行为识别混合分类方法。采用象群优化算法对支持向量机参数进行微调,选择最具判别性的特征。该方法的验证将使用一个名为Vicon的基于计算机视觉的数据集来完成。它是通过多次人体动作检测实验获得的。结果表明,在相同的数据集上,该方法在分类精度方面优于其他方法。EHO-SVM混合算法对两个不同动作类选择的测试用例准确率分别达到91.21%和90.62%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信